Citation: Guan-cong Chen, Zi-zheng Fang, Yu-kun Hou, Zhang-fa Tong, Qian Zhao. Shape Memory Polymers with Regionally Defined Glass Transition Temperature via Digital Photocuring[J]. Acta Polymerica Sinica, ;2019, 50(3): 311-318. doi: 10.11777/j.issn1000-3304.2019.18229 shu

Shape Memory Polymers with Regionally Defined Glass Transition Temperature via Digital Photocuring

  • Corresponding author: Qian Zhao, qianzhao@zju.edu.cn
  • Received Date: 2 November 2018
    Revised Date: 28 November 2018
    Available Online: 27 December 2018

  • Thermal transition temperatures (e.g. glass transition temperatures) play an important role in various applications of shape memory polymers that can recover from temporary shapes to original (permanent) shapes upon heating. This study reports a shape memory epoxy with unsaturated double bonds, enabling a secondary photocuring process. Dual-functional epoxy monomer, E44, and monofunctional epoxy monomer, glycidyl methacrylate, are first thermally cured via a polyether amine crosslinker. Properties of the cured epoxy can be finely tuned by controlling the feed compositions. The increase of feed ratio of glycidyl methacrylate will lead to lower glass transition temperature and elastic modulus, whereas larger strain at break. In the secondary photocuring process, the unsaturated bonds provided by glycidyl methacrylate are polymerized after light exposure, forming additional crosslinking points. As a result, the glass transition temperature of the material increases. Herein, digital photo-masking technique is applied for the photocuring process via a commercial projector. The regional exposure time of the material can be conducted, and thus, the local glass transition temperature can be controlled in a range of approximately 40 − 70 °C. Storage modulus at the rubbery state of the material increases from approximately 0.5 MPa to 8 MPa after photo exposure for 240 s, implying that there is a remarkable increase of the crosslinking density via the secondary photocuring. Both the materials before and after the secondary photocuring provide ideal shape memory performance. The shape fixity ratios and shape recovery ratios retain nearly 100% during six shape memory cycles, indicating good thermo-mechanical stability of the material. The material with regional controllable glass transition temperature enables a programmable multi-shape recovery process. Complex original shapes can be fabricated if the secondary photocuring is conducted towards a thermally cured epoxy. In addition, the material can be potentially applied as a novel substrate for stretchable electronics due to its strain isolation functionality.
  • 加载中
    1. [1]

    2. [2]

      Zhao Q, Qi H J, Xie T. Prog Polym Sci, 2015, 49-50: 79 − 120  doi: 10.1016/j.progpolymsci.2015.04.001

    3. [3]

      Lendlein A, Behl M, Hiebl B, Wischke C. Expert Rev Med Devices, 2010, 7: 357 − 79  doi: 10.1586/erd.10.8

    4. [4]

      Chen H M, Wang L, Zhou S B. Chinese J Polym Sci, 2018, 36: 905 − 917  doi: 10.1007/s10118-018-2118-7

    5. [5]

      Zhang Y Y, Gao H J, Wang H, Xu Z Y, Chen X W, Liu B, Shi Y, Lu Y, Wen L F, Li Y, Li Z S, Men Y F, Feng X Q, Liu W G. Adv Funct Mater, 2018, 28: 1705962  doi: 10.1002/adfm.v28.9

    6. [6]

      Liu Y J, Du H Y, Liu L W, Leng J S. Smart Mater Struct, 2014, 23: 023001  doi: 10.1088/0964-1726/23/2/023001

    7. [7]

      Zhang G G, Peng W J, Wu J J, Zhao Q, Xie T. Nat Commun, 2018, 9: 4002  doi: 10.1038/s41467-018-06420-w

    8. [8]

      Dong J T, Zou W K, Chen F, Zhao Q. Chinese J Polym Sci, 2018, 36: 953 − 959  doi: 10.1007/s10118-018-2119-6

    9. [9]

      Zhang X Z, Zhou Q Q, Liu H R, Liu H W. Soft Matter, 2014, 10: 3748 − 3754  doi: 10.1039/c4sm00218k

    10. [10]

      Lendlein A, Jiang H Y, Junger O, Langer R. Nature, 2005, 434: 875 − 882

    11. [11]

      Yang L, Wang Z H, Fei G X, Xia H S. Macromol Rapid Commun, 2017, 38: 1700421  doi: 10.1002/marc.v38.23

    12. [12]

      Xie T. Rousseau I A. Polymer, 2009, 50: 1852 − 1856

    13. [13]

      Zheng N, Fang G Q, Cao ZL, Zhao Q, Xie T. Polym Chem, 2015, 6: 3046 − 3053  doi: 10.1039/C5PY00172B

    14. [14]

    15. [15]

      Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A. P Natl Acad Sci USA, 2006, 103: 3540 − 3545  doi: 10.1073/pnas.0600079103

    16. [16]

      Koerner H, Price G, Pearce NA, Alexander M, Vaia R A. Nat Mater, 2004, 3: 115 − 20  doi: 10.1038/nmat1059

    17. [17]

      Qi X, Yao X, Deng S, Zhou T, Fu Q. J Mater Chem A, 2014, 2: 2240 − 2249  doi: 10.1039/C3TA14340F

    18. [18]

      Liu Y, Zhang Q L, Feng J C. Polymer, 2018, 146: 267 − 274  doi: 10.1016/j.polymer.2018.05.047

    19. [19]

      Lu W, Le X X, Zhang J W, Huang Y J, Chen T. Chem Soc Rev, 2017, 46: 1284 − 1294  doi: 10.1039/C6CS00754F

    20. [20]

      Dong Z Q, Cao Y, Yuan Q J, Wang Y F, Li J H, Li B J, Zhang S. Macromol Rapid Commun, 2013, 34: 867 − 872  doi: 10.1002/marc.201300084

    21. [21]

      Zeng C, Seino H, Ren J, Yoshie N. ACS Appl Mater Interfaces, 2014, 6: 2753 − 2758  doi: 10.1021/am405287p

    22. [22]

      Pei Z Q, Yang Y, Chen Q M, Wei Y, Ji Y. Adv Mater, 2016, 28: 156 − 160  doi: 10.1002/adma.201503789

    23. [23]

      Mao Y Q, Yu K, Isakov M S, Wu J, Dunn M L, Qi H J. Sci Rep, 2015, 5: 13616 − 13628  doi: 10.1038/srep13616

    24. [24]

      Cao Y, Zhang G G, Zhang Y C, Yue M K, Chen Y, Cai S S, Xie T, Feng X. Adv Funct Mater, 2018, 28: 1804604

    25. [25]

      Nair D P, Cramer N B, Gaipa J C, McBride M K, Matherly E M, McLeod R R, Shandas R, Bowman C N. Adv Funct Mater, 2012, 53: 2429 − 2438

    26. [26]

      Huang L M, Jiang R Q, Wu J J, Song J Z, Bai H, Li B G, Zhao Q, Xie T. Adv Mater, 2017, 29: 1605390  doi: 10.1002/adma.201605390

    27. [27]

      Zhao Q, Zou W, Luo Y, Xie T. Sci Adv, 2016, 2: e1501297  doi: 10.1126/sciadv.1501297

    28. [28]

      Zheng N, Fang Z Z, Zou W K, Zhao Q, Xie T. Angew Chem Int Ed, 2016, 55: 11421 − 11425  doi: 10.1002/anie.201602847

    29. [29]

      Ware T, Simon D, Hearon K, Liu C, Shah S, Reeder J, Khodaparast N, Kilgard M P, Maitland D J, Rennaker R L, Voit W E. Macromol Mater Eng, 2012, 297: 1193 − 1202  doi: 10.1002/mame.v297.12

    30. [30]

      Wu J J, Huang L M, Zhao Q, Xie T. Chinese J Polym Sci, 2018, 36(5): 563 − 575  doi: 10.1007/s10118-018-2089-8

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    5. [5]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    18. [18]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

Metrics
  • PDF Downloads(0)
  • Abstract views(130)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return