Citation: Cui Su, Guang-yu Shi, Du-jin Wang, Guo-ming Liu. A Model for the Crystal Orientation of Polymers Confined in 1D Nanocylinders[J]. Acta Polymerica Sinica, ;2019, 50(3): 281-290. doi: 10.11777/j.issn1000-3304.2019.18218 shu

A Model for the Crystal Orientation of Polymers Confined in 1D Nanocylinders

  • Corresponding author: Guo-ming Liu, gmliu@iccas.ac.cn
  • Received Date: 15 October 2018
    Revised Date: 23 November 2018
    Available Online: 24 December 2018

  • Anodic aluminum oxide (AAO) templates with parallel aligned nanochannels provide an ideal scenario for constructing the one-dimensional (1D) nanoconfinement environment. In recent years, while many studies have been conducted on the orientation of crystalline polymers in AAO, a universal model is still absent for explaining the diverse or even contradictory observations in different polymer systems and further understanding the complicated evolution of orientation upon changing the crystallization conditions. In this work, the texture of isotactic polypropylene (iPP) in AAO template was studied by X-ray pole figure analysis, with two major modes of uniaxial orientation, b* or a*\begin{document}${\vec{{n}}}$\end{document} (pore axis), observed for iPP. Furthermore, the relative ratio of these two orientation modes varied with the crystallization conditions, indicating that their temperature dependence differed from each other. Specifically, the orientation degree of both b* and a*\begin{document}${\vec{{n}}}$\end{document} gradually decreased with raised cooling rate, and the changes in the latter were more pronounced. Moreover, <110>*║\begin{document}${\vec{{n}}}$\end{document} orientation emerged with the increase of cooling rate, and the relative population of this orientation was also enhanced. Samples would be amorphous if quenched directly into liquid nitrogen. As the previous model apparently failed to explain these observations, a simple " 1D lattice” model was proposed herein to numerically simulate the crystallization of polymer within 1D channel. In particular, it enabled to explore the influences of nucleation rate and crystal growth rate at a wide range of scales. According to the model established, orientation behavior of polymer in 1D nanocylinders can be divided into three zones. High nucleation rate combined with low growth rate will result in nearly isotropic structure, which corresponds to the crystallization under very large supercooling. The intermediate zone holds moderate nucleation rate and growth rate, orientation structure in which follows the rule of " direction of the fastest growth aligns with the channel axis”. When the nucleation rate is very low and the growth rate is high, any (hk0) will grow freely to fill the whole channel under static conditions, which is the scenario described earlier by the " kinetic selection” model. In summary, comparison of experimental and simulation results proved that the complete model developed in this study can better explain those diverse observations recorded in literature.
  • 加载中
    1. [1]

      Samanta P, Liu C L, Nandan B, Chen H L. Chapter 13-Crystallization of Polymers in Confined Space. In: Thomas S, Gowd E B, Kalarikkal N, eds. Crystallization in Multiphase Polymer Systems. Kidlington Oxford (UK): Elsevier, 2018. 367 – 431

    2. [2]

      Mary Michell R, Blaszczyk-Lezak I, Mijangos C, Mueller A J. J Polym Sci, Part B: Polym Phys, 2014, 52(18): 1179 − 1194  doi: 10.1002/polb.23553

    3. [3]

      Müller A J, Balsamo V, Arnal M L. Adv Polym Sci, 2005, 190: 1 − 63  doi: 10.1007/b138192

    4. [4]

      Müller M L, Arnal M L, Lorenzo A T. Crystallization in Nano-Confined Polymeric Systems. In: Piorkowska E, Rutledge G C, eds. Handbook of Polymer Crystallization. Hoboken, New Jersey (USA): John Wiley and Sons, 2013. 347 – 378

    5. [5]

      Michell R M, Müller A J. Prog Polym Sci, 2016, 54-55: 183 − 213  doi: 10.1016/j.progpolymsci.2015.10.007

    6. [6]

      Cheng J F, Pu H T. Chinese J Polym Sci, 2016, 34(12): 1411 − 1422  doi: 10.1007/s10118-016-1850-0

    7. [7]

    8. [8]

      Vanroy B, Wubbenhorst M, Napolitano S. ACS Macro Lett, 2013, 2(2): 168 − 172  doi: 10.1021/mz300641x

    9. [9]

      Rittigstein P, Priestley R D, Broadbelt L J, Torkelson J M. Nat Mater, 2007, 6(4): 278 − 282  doi: 10.1038/nmat1870

    10. [10]

      Huang P, Zhu L, Cheng S Z D, Ge Q, Quirk R P, Thomas E L, Lotz B, Hsiao B S, Liu L Z, Yeh F J. Macromolecules, 2001, 34(19): 6649 − 6657  doi: 10.1021/ma010671x

    11. [11]

      Huang P, Guo Y, Quirk R P, Ruan J J, Lotz B, Thomas E L, Hsiao B S, Avila-Orta C A, Sics I, Cheng S Z D. Polymer, 2006, 47(15): 5457 − 5466  doi: 10.1016/j.polymer.2005.06.129

    12. [12]

      Nakagawa S, Kadena K I, Ishizone T, Nojima S, Shimizu T, Yamaguchi K, Nakahama S. Macromolecules, 2012, 45(4): 1892 − 1900  doi: 10.1021/ma202566f

    13. [13]

      Barroso-Bujans F, Palomino P, Fernandez-Alonso F, Rudic S, Alegria A, Colmenero J, Enciso E. Macromolecules, 2014, 47(24): 8729 − 8737  doi: 10.1021/ma501607e

    14. [14]

      Jiang S C, Qiao C D, Tian S Z, Ji X L, An L J, Jiang B Z. Polymer, 2001, 42(13): 5755 − 5761  doi: 10.1016/S0032-3861(01)00026-X

    15. [15]

      Jiang S, Yu D, Ji X, An L, Jiang B. Polymer, 2000, 41(6): 2041 − 2046  doi: 10.1016/S0032-3861(99)00342-0

    16. [16]

      Zhao W W, Su Y L, Gao X, Qian Q Y, Chen X, Wittenbrink R, Wang D J. J Polym Sci, Part B: Polym Phys, 2017, 55(6): 498 − 505  doi: 10.1002/polb.v55.6

    17. [17]

      Zhao W W, Su Y L, Muller A J, Gao X, Wang D J. J Polym Sci, Part B: Polym Phys, 2017, 55(21): 1608 − 1616  doi: 10.1002/polb.24418

    18. [18]

      Zhao W W, Su Y L, Wang D J. Mod Phys Lett B, 2017, 31(23): 1730003  doi: 10.1142/S0217984917300034

    19. [19]

      Pan L, Tao Q H, Zhang S D, Wang S S, Zhang J, Wang S H, Wang Z Y, Zhang Z P. Sol Energy Mater Sol Cells, 2012, 98: 66 − 70  doi: 10.1016/j.solmat.2011.09.020

    20. [20]

      Su Y L, Liu G M, Xie B Q, Fu D S, Wang D J. Acc Chem Res, 2014, 47(1): 192 − 201  doi: 10.1021/ar400116c

    21. [21]

      Masuda H, Fukuda K. Science, 1995, 268(5216): 1466 − 1468  doi: 10.1126/science.268.5216.1466

    22. [22]

      Michell R M, Blaszczyk-Lezak I, Mijangos C, Müller A J. Polymer, 2013, 54(16): 4059 − 4077  doi: 10.1016/j.polymer.2013.05.029

    23. [23]

      Wu H, Higaki Y, Takahara A. Prog Polym Sci, 2018, 77: 95 − 117  doi: 10.1016/j.progpolymsci.2017.10.004

    24. [24]

      Schultz J M. Macromolecules, 1996, 29(8): 3022 − 3024  doi: 10.1021/ma950673f

    25. [25]

      Guan Y, Liu G M, Gao P Y, Li L, Ding G Q, Wang D J. ACS Macro Lett, 2013, 2(3): 181 − 184  doi: 10.1021/mz300592v

    26. [26]

      Woo E, Huh J, Jeong Y G, Shin K. Phys Rev Lett, 2007, 98(13): 136103  doi: 10.1103/PhysRevLett.98.136103

    27. [27]

      Wu H, Wang W, Huang Y, Wang C, So Z H. Macromolecules, 2008, 41(20): 7755 − 7758  doi: 10.1021/ma801498b

    28. [28]

      Duran H, Steinhart M, Butt H J, Floudas G. Nano Lett, 2011, 11(4): 1671 − 1675  doi: 10.1021/nl200153c

    29. [29]

      Reid D K, Ehlinger B A, Shao L, Lutkenhaus J L. J Polym Sci, Part B: Polym Phys, 2014, 52(21): 1412 − 1419  doi: 10.1002/polb.v52.21

    30. [30]

      Suzuki Y, Duran H, Akram W, Steinhart M, Floudas G, Butt H J. Soft Matter, 2013, 9(38): 9189 − 9198  doi: 10.1039/c3sm50907a

    31. [31]

      Suzuki Y, Duran H, Steinhart M, Butt H J, Floudas G. Macromolecules, 2014, 47(5): 1793 − 1800  doi: 10.1021/ma4026477

    32. [32]

      Shi G Y, Liu G M, Su C, Chen H M, Chen Y, Su Y L, Muller A J, Wang D J. Macromolecules, 2017, 50(22): 9015 − 9023  doi: 10.1021/acs.macromol.7b02284

    33. [33]

      Steinhart M, Göring P, Dernaika H, Prabhukaran M, Gösele U, Hempel E, Thurn-Albrecht T. Phys Rev Lett, 2006, 97(2): 027801  doi: 10.1103/PhysRevLett.97.027801

    34. [34]

      Loo Y L, Register R A. Crystallization within Block Copolymer Mesophases. In: Hamley I W, eds. Developments in Block Copolymer Science and Technology. Chichester, West Sussex (UK): John Wiley & Sons, 2004. 213 – 243

    35. [35]

      Ma Y, Hu W, Hobbs J, Reiter G. Soft Matter, 2008, 4(3): 540 − 543  doi: 10.1039/b715065b

    36. [36]

      Michell R M, Lorenzo A T, Muller A J, Lin M C, Chen H L, Blaszczyk-Lezak I, Martin J, Mijangos C. Macromolecules, 2012, 45(3): 1517 − 1528  doi: 10.1021/ma202327f

    37. [37]

      Liu C L, Chen H L. Macromolecules, 2017, 50(2): 631 − 641  doi: 10.1021/acs.macromol.6b02347

    38. [38]

      Liu C L, Chen H L. Soft Matter, 2018, 14(26): 5461 − 5468  doi: 10.1039/C8SM00795K

    39. [39]

      Maiz J, Schafer H, Rengarajan G T, Hartmann-Azanza B, Eickmeier H, Haase M, Mijangos C, Steinhart M. Macromolecules, 2013, 46(2): 403 − 412  doi: 10.1021/ma3023876

    40. [40]

      Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W. Macromolecules, 2007, 40(18): 6617 − 6623  doi: 10.1021/ma070994e

    41. [41]

    42. [42]

      Shingne N, Geuss M, Thurn-Albrecht T, Schmidt H W, Mijangos C, Steinhart M, Martin J. J Phys Chem B, 2017, 121(32): 7723 − 7728  doi: 10.1021/acs.jpcb.7b05424

    43. [43]

      Martín J, Iturrospe A, Cavallaro A, Arbe A, Stingelin N, Ezquerra T A, Mijangos C, Nogales A. Chem Mater, 2017, 29(8): 3515 − 3525  doi: 10.1021/acs.chemmater.6b05391

    44. [44]

      Li L, Liu J, Qin L, Zhang C, Sha Y, Jiang J, Wang X, Chen W, Xue G, Zhou D. Polymer, 2017, 110: 273 − 283  doi: 10.1016/j.polymer.2016.12.081

    45. [45]

      Su C, Shi G Y, Li X L, Zhang X Q, Müller A J, Wang D J, Liu, G M. Macromolecules, DOI: 10.1021/acs.macromol.8b01801

    46. [46]

      Natta G, Corradini P. Il Nuovo Cimento (1955-1965), 1960, 15(1): 40 − 51

    47. [47]

      Lovinger A J. J Polym Sci, Part B: Polym Phys, 1983, 21(1): 97 − 110  doi: 10.1002/pol.1983.180210107

    48. [48]

      Yamada K, Kajioka H, Nozaki K, Toda A. J Macromol Sci Part B-Phys, 2011, 50(2): 236 − 247

    49. [49]

      Zhang B, Chen J, Liu B, Wang B, Shen C, Reiter R, Chen J, Reiter G. Macromolecules, 2017, 50(16): 6210 − 6217  doi: 10.1021/acs.macromol.7b01381

  • 加载中
    1. [1]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    2. [2]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    3. [3]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    6. [6]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    7. [7]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    8. [8]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    9. [9]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    10. [10]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    11. [11]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    14. [14]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    17. [17]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    18. [18]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    19. [19]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    20. [20]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

Metrics
  • PDF Downloads(0)
  • Abstract views(133)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return