Citation: Dan Zhang, Wei Wu, Xi-qun Jiang. Controllable Synthesis and Biological Properties of Unimolecular Polymer Nanomaterials[J]. Acta Polymerica Sinica, ;2019, 50(3): 199-208. doi: 10.11777/j.issn1000-3304.2019.18191 shu

Controllable Synthesis and Biological Properties of Unimolecular Polymer Nanomaterials

  • Corresponding author: Wei Wu, wuwei@nju.edu.cn
  • Received Date: 30 August 2018
    Revised Date: 10 September 2018
    Available Online: 30 October 2018

  • With the rapid development of modern organic chemistry and polymer chemistry, a variety of highly efficient and controllable synthetic methods have been discovered and applied extensively, such as click chemistry, atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, and ring-opening metathesis polymerization. Their comprehensive application has realized the controlled preparation of unimolecular polymer nanomaterials with well-designed topological structures, including cyclodextrane polyrotaxanes, dendrimers, multiarm star-shaped polymers, wormlike polymer brushes, etc. Functioning as probes and drug carriers for disease diagnoses and treatments, respectively, these specifically fabricated materials are featured with such advantages as high designability, controllability, and stability of chemical structures, favorable reproducibility of pharmacokinetic and pharmacological profiles, great abundancy in reactive groups for multiple functionalization, and desirable ability to covalent-combine drugs for responsive targeted drug release. The highly controllable chemical structures of these unimolecular polymer nanomaterials make them the most suitable objects for studying the relationship between chemical and morphological structures and biological performance. Herein, the recent progress of our group is introduced, with specific focuses on the preparation of unimolecular polymer nanomaterials through controllable synthetic strategies, the precise control of their chemical structures and sizes, and the effect of their chemical structures and sizes on their in vitro and in vivo biological performance. The objectives of our research include cyclodextrane polyrotaxanes, dendrimers, multiarm star-shaped polymers, and wormlike polymer brushes, and their sizes range from several nanometers to dozens of nanometers. Based on our experiments, some important conclusions have been drawn as follows. Within the dimensional range between ten nanometers and dozens of nanometers, the size reduction of such nanomaterials favors higher cellular uptake, shorter blood circulation, as well as higher tumor accumulation and penetration. Besides, the nanomaterials with zwitterionic poly(carboxybetaine) (PCB) surface exhibit higher cellular uptake, longer blood circulation, and higher tumor accumulation and penetration than those with the poly(ethylene glycol) (PEG) surface do thanks to the surface-tethered phenylboronic acid groups. These results can be much conducive to the design of polymer nanocarriers for tumor diagnosis and therapy.
  • 加载中
    1. [1]

      Gerlowski L E, Jain R K. Microvasc Res, 1986, 31(3): 288 − 305  doi: 10.1016/0026-2862(86)90018-X

    2. [2]

      Matsumura Y, Maeda H. Cancer Res, 1986, 46(12): 6387 − 6392

    3. [3]

      Shi J J, Kantoff P W, Wooster R, Farokhzad O. Nat Rev Cancer, 2017, 17(1): 20 − 37  doi: 10.1038/nrc.2016.108

    4. [4]

      Anselmo A C, Prabhakarpandian B, Pant K, Mitragotri S. Transl Mater Res, 2017, 4(1): 014001  doi: 10.1088/2053-1613/aa5468

    5. [5]

      Youn Y S, Bae Y H. Adv Drug Deliv Rev, 2018, 130: 3 − 11  doi: 10.1016/j.addr.2018.05.008

    6. [6]

      Sun X R, Wang G W, Zhang H, Hu S Q, Liu X, Tang J B, Shen Y Q. ACS Nano, 2018, 12(6): 6179 − 6192  doi: 10.1021/acsnano.8b02830

    7. [7]

      Ooya T, Eguchi M, Yui N. J Am Chem Soc, 2003, 125(43): 13016 − 13017  doi: 10.1021/ja034583z

    8. [8]

      Yui N. Macromol Symp, 2009, 279: 158 − 162  doi: 10.1002/masy.v279:1

    9. [9]

      Okada M, Harada A. Org Lett, 2004, 6(3): 361 − 364  doi: 10.1021/ol0361608

    10. [10]

      Li J, Yang C, Li H, Wang X, Goh S H, Ding J L, Wang D Y, Leong K W. Adv Mater, 2006, 18(22): 2969 − 2974  doi: 10.1002/(ISSN)1521-4095

    11. [11]

      Yu S L, Zhang Y J, Wang X, Zhen X, Zhang Z H, Wu W, Jiang X Q. Angew Chem Int Ed, 2013, 52(28): 7272 − 7277  doi: 10.1002/anie.201301397

    12. [12]

    13. [13]

      Zhang J L, Zhang L E, Shun L, Yin C F, Li C, Wu W, Jiang X Q. ACS Biomater Sci Eng, 2018, 4(6): 1963 − 1968  doi: 10.1021/acsbiomaterials.7b00464

    14. [14]

      Jackson C L, Chanzy H D, Booy F P, Drake B J, Tomalia D A, Bauer B J, Amis E J. Macromolecules, 1998, 31(18): 6259 − 6265  doi: 10.1021/ma9806155

    15. [15]

      Wu W, Drissen W, Jiang X Q. J Am Chem Soc, 2014, 136(8): 3145 − 3155  doi: 10.1021/ja411457r

    16. [16]

      Zhang Y J, Chen W Z, Yang C C, Fan Q L, Wu W, Jiang X Q. J Control Release, 2016, 237(1): 115 − 124

    17. [17]

      Müllner M, Dodds S J, Nguyen T H, Senyschyn D, Porter C J H, Boyd B J, Caruso F. ACS Nano, 2015, 9(2): 1294 − 1304  doi: 10.1021/nn505125f

    18. [18]

      Müllner M, Mehta D, Nowell C J, Porter C J H. Chem Commun, 2016, (52): 9121 − 9124

    19. [19]

      Zhang Y J, Zhang Z K, Liu C R, Chen W Z, Li C, Wu W, Jiang X Q. Polym Chem, 2017, 8(10): 1672 − 1679  doi: 10.1039/C6PY01941B

  • 加载中
    1. [1]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    2. [2]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    10. [10]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    11. [11]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    12. [12]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    13. [13]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    16. [16]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

Metrics
  • PDF Downloads(0)
  • Abstract views(130)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return