Citation: Yun Yang, Lei Zhao, Shu-meng Wang, Jun-qiao Ding, Li-xiang Wang. Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain[J]. Acta Polymerica Sinica, ;2019, 50(7): 685-694. doi: 10.11777/j.issn1000-3304.2018.18266 shu

Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain

  • A series of red-emitting thermally activated delayed fluorescence (TADF) polymers based on poly(2,7-carbazole-co-3,3′ -dimethyldiphenyl ether) (PCzDMPE) main chains, including PCzDMPE-R03, PCzDMPE-R05, PCzDMPE-R07, and PCzDMPE-R10, have been designed and synthesized via Suzuki polycondensation. The thermally stable polymers possessed glass transition temperatures above 90 °C and decomposition temperatures above 410 °C, which is beneficial to the devices of long-term services. As the content of red TADF unit increased, the maximum emission was gradually red-shifted from 577 nm (PCzDMPE-R03) to 584 nm (PCzDMPE-R010), while the film photoluminescence quantum yield (PLQY) dropped correspondingly from 0.47 to 0.21 according to the energy gap law. Meanwhile, they all exhibited an obviously delayed fluorescence with the lifetime of 145 – 161 μs, accompanied by a prompt fluorescence of 4.5 – 6.5 ns. For instance, the temperature-dependent transient photoluminescence spectra measured for PCzDMPE-R07 sample displayed an enhanced delayed fluorescence upon the temperature rise from 150 K to 300 K, indicative of its TADF nature. More importantly, compared with earlier reports of red TADF polymers based on poly(fluorene-co-3,3′-dimethyl diphenyl ether), fluorene being replaced by carbazole in the present work could increase the highest occupied molecular orbital (HOMO) level and thus favor the hole injection. As a consequence, the turn-on voltage of PCzDMPE-R07 nondoped device was significantly reduced from 9.8 V to 5.2 V. PCzDMPE-R07 also outperformed the other candidates in terms of a maximum current efficiency of 3.35 cd/A and a maximum external quantum efficiency (EQE) of 2.03%. For performance optimization, a doped device was then fabricated by dispersing 20 wt% of PCzDMPE-R07 into the 1,3-bis(9H-carbazol-9-yl)benzene (mCP) matrix as an emitting layer. The corresponding current efficiency and EQE were further improved to 7.36 cd/A and 3.77%, respectively. To sum up, the copolymer containing carbazole and 3,3′-dimethyldiphenyl ether provides a favorable backbone framework for the design and synthesis of TADF polymers that possesses high efficiency and low driving voltage simultaneously.
  • 加载中
    1. [1]

      Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234 − 238  doi: 10.1038/nature11687

    2. [2]

      Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C. Adv Mater, 2016, 28: 6976 − 6983  doi: 10.1002/adma.201601675

    3. [3]

      Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S, Komino T, Oiwa H, Suzuki F, Wakamiya A, Murata Y, Adachi C. Nat Commun, 2015, 6: 8476  doi: 10.1038/ncomms9476

    4. [4]

      Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L. Adv Mater, 2018, 30: 1704961  doi: 10.1002/adma.201704961

    5. [5]

      Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M. Adv Mater, 2015, 27: 7236 − 7240  doi: 10.1002/adma.201501090

    6. [6]

      Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv Mater, 2016, 28: 4019 − 4024  doi: 10.1002/adma.201505026

    7. [7]

      Shao S Y, Hu J, Wan g X D, Wang L X, Jing X B, Wang F S. J Am Chem Soc, 2017, 139: 17739 − 17742  doi: 10.1021/jacs.7b10257

    8. [8]

      Xie G H, Luo J J, Huang M L, Chen T H, Wu K L, Gong S L, Yang C L. Adv Mater, 2017, 29: 1604223  doi: 10.1002/adma.201604223

    9. [9]

    10. [10]

      Shao S Y, Ding J Q, Ye T L, Xie Z Y, Wang LX, Jing X B, Wang F S. Adv Mater, 2011, 23: 3570 − 3574  doi: 10.1002/adma.201101074

    11. [11]

      Wang Y J, Zhu Y H, Xie G H, Zhan H M, Yang C L, Cheng Y X. J Mater Chem C, 2017, 5: 10715 − 10720  doi: 10.1039/C7TC03769D

    12. [12]

      Ren Z J, Nobuyasu R S, Dias F B, Monkman A P, Yan S K, Bryce M R. Macromolecules, 2016, 49: 5452 − 5460  doi: 10.1021/acs.macromol.6b01216

    13. [13]

      Zeng X, Luo J J, Zhou T, Chen T H, Zhou X, Wu K L, Zou Y, Xie G H, Shao L G, Yang C L. Macromolecules, 2018, 51: 1598 − 1604  doi: 10.1021/acs.macromol.7b02629

    14. [14]

      Yang Y, Zhao L, Wang S M, Ding J Q, Wang L X. Macromolecules, 2018, 51: 9933 − 9942  doi: 10.1021/acs.macromol.8b02050

    15. [15]

      Dijken A V, Bastiaansen J J A M, Kiggen N M M, Langeveld B M W, Rothe C, Monkman A, Bach I, Stössel P, Brunner K. J Am Chem Soc, 2004, 126: 7718 − 7727  doi: 10.1021/ja049771j

    16. [16]

      Garbay G, Muccioli L, Hanifa A, Hadziioannou G, Brochon C, Cloutet E. Polymer, 2017, 119: 274 − 284  doi: 10.1016/j.polymer.2017.05.039

    17. [17]

      Zhang Q S, Kuwabara H, Potscavage W J Jr, Huang S, Hatae Y, Shibata T, Adachi C. J Am Chem Soc, 2014, 136: 18070 − 18081  doi: 10.1021/ja510144h

    18. [18]

      Caspar Jonathan V, Kober E M, Sullivan B P, Meyer T J. J Am Chem Soc, 1982, 104: 632 − 634  doi: 10.1021/ja00366a052

    19. [19]

      Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931 − 7958  doi: 10.1002/adma.v26.47

    20. [20]

      Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Adv Mater, 2013, 25: 3319 − 3323  doi: 10.1002/adma.v25.24

  • 加载中
    1. [1]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(139)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return