Citation: Jing-jing Yan, Chang-fa Xiao, Chun Wang, Hao Fu, Shu-lin An, Ya-ming Jiang. Crystalline Structure Changes of Poly(vinylidene fluoride) Fibers during Stretching Process[J]. Acta Polymerica Sinica, ;2019, 50(7): 752-760. doi: 10.11777/j.issn1000-3304.2018.18261 shu

Crystalline Structure Changes of Poly(vinylidene fluoride) Fibers during Stretching Process

  • Corresponding author: Chang-fa Xiao, xiaochangfa@163.com
  • Received Date: 3 December 2018
    Revised Date: 26 December 2018
    Available Online: 1 February 2019

  • The poly(vinylidene fluoride) (PVDF) as-spun fibers with different spin-stretching ratios were fabricated via melt-spinning method using plunger spinning machine. PVDF fibers with different post-stretching ratios were subsequently obtained by post-stretching method under the thermal treatment condition. The crystal and orientation structure of the fibers were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and so on. The results indicated the orientation of α crystal and macromolecular increased with the increasing spin-stretching ratio. Furthermore, as the higher spin-stretching ratio increased, the degree of crystallinity of as-spun fiber was prone to perfection. Furthermore, according to the POM photomicrograph, the horizon of extinction position was almost entirely black, and the horizon of diagonal position was getting brighter, due to the increase of the anisotropy of as-spun fibers. This was attributed that the irregular fiber macromolecules were stretched to regular structure. When spin-stretching ratio was 330, the crystallinity of as-spun fiber could reach 56.38% and the orientation factor of α(110/200) crystal plane was up to 0.89. In terms of post-stretching technique, the stretching ratios had no significant influence on the degree of crystallinity. However, the post-stretching process played a positive role in the transition of the crystal phase from α to β. The molecular chains of the fibers are easier to slip and arrange regularly along the fiber axis during spin-stretching process. The conformation was easier to transfer from α phase to β phase owing to the segmental motion of molecular chains during post-stretching process. Especially, the orientation of β crystal was also improved at the same time. Specially, when the post-stretching was up to the stage of uniform reduction of fiber diameter, the orientation of β crystal retained a high level. When post-stretching ratio was 11, the content of β crystal could account for 82.85% and the orientation factor of β(110/200) crystal plane was up to 0.83.
  • 加载中
    1. [1]

    2. [2]

      Humphrey J S, Amin-Sanayei R. Vinylidene Fluoride Polymers. Encyclopedia of Polymer Science and Technology, 2001. 476 – 485

    3. [3]

      Du C H, Zhu B K, Xu Y Y. J Appl Polym Sci, 2007, 104(4): 2254 − 2259  doi: 10.1002/(ISSN)1097-4628

    4. [4]

    5. [5]

      Milind V M, Devang V K, Ashok M. Polym Eng Sci, 2010, 47(12): 1992 − 2004

    6. [6]

      Lund A, Hagström B. J Appl Polym Sci, 2010, 116(5): 2685 − 2693

    7. [7]

      Gaétan L, Yves M, Robert G, Martin W K, Louisette M, Thien H, Yvan D. J Biomed Mater Res, 1995, 29(12): 1525  doi: 10.1002/(ISSN)1097-4636

    8. [8]

    9. [9]

    10. [10]

    11. [11]

      Schultz J, Hsiao B S, Samon J M. Polymer, 2000, 41(25): 8887 − 8895  doi: 10.1016/S0032-3861(00)00232-9

    12. [12]

      Sajkiewicz P, Wasiak A, Gocłowski Z. Eur Polym J, 1999, 35(3): 423 − 429  doi: 10.1016/S0014-3057(98)00136-0

    13. [13]

      Masamichi K, Kohji T, Hiroyuki T. Macromolecules, 1975, 8(2): 158 − 171  doi: 10.1021/ma60044a013

    14. [14]

      Sencadas V, Costa C M, Moreira V, Monteiro J, Mendiratta S K, Mano J F, Lanceros-Méndez S. e-Polymers, 2005, 5(1): 10 − 21

    15. [15]

      Gregorio R, Ueno E M. J Mater Sci, 1999, 34(18): 4489 − 4500  doi: 10.1023/A:1004689205706

    16. [16]

      Guo Z W, Nilsson E, Rigdahl M, Hagström B. J Appl Polym Sci, 2013, 130(4): 2603 − 2609  doi: 10.1002/app.39484

    17. [17]

      Gregorio R. J Appl Polym Sci, 2010, 100(4): 3272 − 3279

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      Zhang H, Ren P, Zhang G F, Xiao C F. J Wuhan Univ Technol, 2006, 21(4): 53 − 55  doi: 10.1007/BF02841204

    22. [22]

      Hsu T C, Geil P H. J Mater Sci, 1989, 24(4): 1219 − 1232  doi: 10.1007/BF02397050

    23. [23]

      Matsushige K, Nagata K, Imada S, Takemura T. Polymer, 1980, 21(12): 1391 − 1397  doi: 10.1016/0032-3861(80)90138-X

    24. [24]

      Marega C, Marigo A. Eur Polym J, 2003, 39(8): 1713 − 1720  doi: 10.1016/S0014-3057(03)00062-4

    25. [25]

      Steinmann W, Walter S, Seide G, Gries T, Roth G, Schubnell M. J Appl Polym Sci, 2011, 120(1): 21 − 35  doi: 10.1002/app.v120.1

    26. [26]

      Tang W, Deng L J, Xu K W, Lu J. Surf Coat Technol, 2007, 201(12): 5944 − 5947  doi: 10.1016/j.surfcoat.2006.10.049

    27. [27]

      Ma W Z, Zhang J, Chen S J, Wang X L. Colloid Polym Sci, 2008, 286(10): 1193 − 1202  doi: 10.1007/s00396-008-1889-8

    28. [28]

      Lund A, Hagström B. J Appl Polym Sci, 2011, 120(2): 1080 − 1089  doi: 10.1002/app.v120.2

    29. [29]

    30. [30]

    31. [31]

    32. [32]

      Xiao C F, Zhang Y F. Chinese J Polym Sci, 2000, 18(1): 81 − 86

    33. [33]

      Gregorio R, Cestari M. J Polym Sci, Part B: Polym Phys, 1994, 32(5): 859 − 870  doi: 10.1002/polb.1994.090320509

    34. [34]

      Sencadas V, Costa C M, Moreira V, Monteiro J, Mendiratta S K, Mano J F, Lanceros-Méndez S. e-Polymers, 2013, 5(1): 10 − 21

    35. [35]

    36. [36]

  • 加载中
    1. [1]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    4. [4]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    5. [5]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    12. [12]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    19. [19]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(0)
  • Abstract views(195)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return