Citation: Qi-yi Li, Ting Lei, Ze-fan Yao, Jie-yu Wang, Jian Pei. Multi-level Self-assembly of Conjugated Polymers[J]. Acta Polymerica Sinica, ;2019, 50(1): 1-12. doi: 10.11777/j.issn1000-3304.2018.18223 shu

Multi-level Self-assembly of Conjugated Polymers

  • Corresponding author: Ting Lei, tinglei@pku.edu.cn Jian Pei, jianpei@pku.edu.cn
  • Received Date: 17 October 2018
    Revised Date: 13 November 2018
    Available Online: 13 December 2018

  • Conjugated polymer materials have properties of light-weight, flexibility, good solution processability, performance tunability and low manufacturing cost. Therefore they hold great promise in various applications like light-emitting diodes, photovoltaics, field effect transistors and sensors. Due to the weak intermolecular interactions between conjugated polymers, subtle chemical structure modification and fabrication process alteration will cause variation of molecule assembly behaviours at a broad range of length scale and change of device performance. Thus, complex and diverse multi-level self-assembly structures of conjugated polymers can be formed. This provides rational molecular design and future industrial application with theoretical basis and applicable design strategies. This also sheds light on understanding the " structure-function relationships” of conjugated polymer materials. For the first time, based on systematic comparison of similarity between multi-level self-assembly behaviours of conjugated polymers and proteins, this review proposes that the assemblies used in optoelectronic devices usually have quaternary structures as in proteins: the primary structure is the one-dimensional polymer chain connected by covalent bonding; the secondary structure is multiple polymer chain aggregates forming through interchain interactions like lamellar packing, π-π stacking and chain entanglement; the tertiary structure is the phase behaviour as crystalline and amorphous region with domain size and grain boundary; the quaternary structure is the phase segregation in multi-component mixture through interaction between different component and phase interfacial properties. Multi-level self-assembly behaviours are in concert with each other to functionalize conjugated polymer materials by light, electric, magnet and heat performances. This review summarizes recent progresses on studies of conjugated polymer multi-level self-assembly process, which provides us with a new prospect of better observing, understanding and guiding the conjugated polymer multi-level self-assembly process. And thereby the substantial relationship between chemical structure, fabrication processing, assembly behaviour and macroscopic physical process is established, and the optoelectronic properties of polymer materials is furthermore optimized.
  • 加载中
    1. [1]

      Sanger F. Adv Protein Chem, 1952, 7: 1 − 67  doi: 10.1016/S0065-3233(08)60017-0

    2. [2]

      Schellman J A, Schellman C G. Protein Science: A Publication of the Protein Society, 1997, 6(5): 1092 − 1100  doi: 10.1002/pro.v6:5

    3. [3]

      Braden C, Tooze J. Introduction to Protein Structure. New York: Garland, 1999

    4. [4]

      Grozema F C, van Duijnen P T, Berlin Y A, Ratner M A, Siebbeles L D. J Phys Chem B, 2002, 106(32): 7791 − 7795  doi: 10.1021/jp021114v

    5. [5]

      Prins P, Grozema F, Schins J, Patil S, Scherf U, Siebbeles L. Phys Rev Lett, 2006, 96(14): 146601  doi: 10.1103/PhysRevLett.96.146601

    6. [6]

      Oberhofer H, Reuter K, Blumberger J. Chem Rev, 2017, 117(15): 10319 − 10357

    7. [7]

      Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J. Chem Mater, 2012, 24(10): 1762 − 1770  doi: 10.1021/cm300117x

    8. [8]

      Lei T, Xia X, Wang J Y, Liu C J, Pei J. J Am Chem Soc, 2014, 136(5): 2135 − 2141  doi: 10.1021/ja412533d

    9. [9]

      Zaumseil J, Sirringhaus H. Chem Rev, 2007, 107(4): 1296 − 1323  doi: 10.1021/cr0501543

    10. [10]

      Usta H, Newman C, Chen Z H, Facchetti A. Adv Mater, 2012, 24(27): 3678 − 3684  doi: 10.1002/adma.v24.27

    11. [11]

      Gao X K, Hu Y B. J Mater Chem C, 2014, 2(17): 3099 − 3117  doi: 10.1039/C3TC32046D

    12. [12]

      Newman C R, Frisbie C D, da Silva D A, Bredas J L, Ewbank P C, Mann K R. Chem Mater, 2004, 16(23): 4436 − 445  doi: 10.1021/cm049391x

    13. [13]

      Phan H, Ford M J, Lill A T, Wang M, Bazan G C, Nguyen T Q. Adv Funct Mater, 2017, 27(38): 1701358

    14. [14]

      Ford M J, Wang M, Phan H, Nguyen T Q, Bazan G C. Adv Funct Mater, 2016, 26(25): 4472 − 4480  doi: 10.1002/adfm.201601294

    15. [15]

      Tsao H N, Cho D M, Park I, Hansen M R, Mavrinskiy A, Yoon D Y, Graf R, Pisula W, Spiess H W, Mullen K. J Am Chem Soc, 2011, 133(8): 2605 − 2612  doi: 10.1021/ja108861q

    16. [16]

      Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Brédas J L. Chem Rev, 2007, 107(4): 926 − 952  doi: 10.1021/cr050140x

    17. [17]

      Olivier Y, Niedzialek D, Lemaur V, Pisula W, Mullen K, Koldemir U, Reynolds J R, Lazzaroni R, Cornil J, Beljonne D. Adv Mater, 2014, 26(14): 2119 − 2136  doi: 10.1002/adma.v26.14

    18. [18]

      Niedzialek D, Lemaur V, Dudenko D, Shu J, Hansen M R, Andreasen J W, Pisula W, Mullen K, Cornil J, Beljonne D. Adv Mater, 2013, 25(13): 1939 − 1947  doi: 10.1002/adma.v25.13

    19. [19]

      Savage R C, Orgiu E, Mativetsky J M, Pisula W, Schnitzler T, Eversloh C L, Li C, Mullen K, Samori P. Nanoscale, 2012, 4(7): 2387 − 2393  doi: 10.1039/c2nr30088e

    20. [20]

      Samori P, Fechtenkotter A, Jackel F, Bohme T, MüllenK, Rabe J P. J Am Chem Soc, 2001, 123(46): 11462 − 11467  doi: 10.1021/ja0111380

    21. [21]

      Balakrishnan K, Datar A, Naddo T, Huang J L, Oitker R, Yen M, Zhao J C, Zang L. J Am Chem Soc, 2006, 128(22): 7390 − 7398  doi: 10.1021/ja061810z

    22. [22]

      Lei T, Dou J H, Pei J. Adv Mater, 2012, 24(48): 6457 − 6461  doi: 10.1002/adma.v24.48

    23. [23]

      Brinkmann M, Rannou P. Adv Funct Mater, 2007, 17(1): 101 − 108  doi: 10.1002/(ISSN)1616-3028

    24. [24]

      DeLongchamp D M, Kline R J, Jung Y, Germack D S, Lin E K, Moad A J, Richter L J, Toney M F, Heeney M, McCulloch I. ACS Nano, 2009, 3(4): 780 − 787  doi: 10.1021/nn800574f

    25. [25]

      Whitehead K S, Grell M, Bradley D D C, InbasekaranM, Woo E P. Synth Met, 2000, 111: 181 − 185

    26. [26]

      Banach M J, Friend R H, Sirringhaus H. Macromolecules, 2004, 37(16): 6079 − 6085  doi: 10.1021/ma035775h

    27. [27]

      Tseng H R, Phan H, Luo C, Wang M, Perez L A, Patel S N, Ying L, Kramer E J, Nguyen T Q, Bazan G C, Heeger A J. Adv Mater, 2014, 26(19): 2993 − 2998  doi: 10.1002/adma.201305084

    28. [28]

      Tseng H R, Ying L, Hsu B B Y, Perez L A, Takacs C J, Bazan G C, Heeger A J. Nano Lett, 2012, 12(12): 6353 − 6357  doi: 10.1021/nl303612z

    29. [29]

      Li M M, An C B, Marszalek T, Baumgarten M, Yan H, Mullen K,Pisula W. Adv Mater, 2016, 28(42): 9430 − 9438  doi: 10.1002/adma.201602660

    30. [30]

      Rivnay J, Toney M F, Zheng Y, Kauvar I V, Chen Z H, Wagner V, Facchetti A, Salleo A. Adv Mater, 2010, 22(39): 4359 − 4363  doi: 10.1002/adma.v22:39

    31. [31]

      Zhang X R, Richter L J, DeLongchamp D M, Kline R J, Hammond M R, McCulloch I, Heeney M, Ashraf R S, Smith J N, Anthopoulos T D, Schroeder B, Geerts Y H, Fischer D A, Toney M F. J Am Chem Soc, 2011, 133(38): 15073 − 15084  doi: 10.1021/ja204515s

    32. [32]

      Botiz I, Stingelin N. Materials, 2014, 7(3): 2273 − 2300  doi: 10.3390/ma7032273

    33. [33]

      Chen L, Zhao K F, Cao X X, Liu J G, Yu X H, Han Y C. Polymer (United Kingdom), 2018, 149: 23 − 29

    34. [34]

      Zheng Y Q, Yao Z F, Lei T, Dou J H, Yang C Y, Zou L, Meng X Y, Ma W,Wang J Y, Pei J. Adv Mater, 2017, 29(42): 1701072  doi: 10.1002/adma.201701072

    35. [35]

      Wei S Y, Tian F S, Ge F, Wang X H, Zhang G B, Lu H B, Yin J, Wu Z, Qiu L. ACS Appl Mater Interfaces, 2018, 10(26): 22504 − 22512  doi: 10.1021/acsami.8b06458

    36. [36]

      Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A. Nat Mater, 2013, 12(11): 1038 − 1044  doi: 10.1038/nmat3722

    37. [37]

      Zhang X R, Bronstein H, Kronemeijer A J, Smith J, Kim Y, Kline R J, Richter L J, Anthopoulos T D, Sirringhaus H, Song K, Heeney M, Zhang W M, McCulloch I, DeLongchamp D M. Nat Commun, 2013, (4): 2238

    38. [38]

      Venkateshvaran D, Nikolka M, Sadhanala A, Lemaur V, Zelazny M, Kepa M, Hurhangee M, Kronemeijer A J, Pecunia V, Nasrallah I, Romanov I, Broch K, McCulloch I, Emin D, Olivier Y, Cornil J, Beljonne D, Sirringhaus H. Nature, 2014, 515(7527): 384 − 388  doi: 10.1038/nature13854

    39. [39]

      Lei Y L, Deng P, Lin M, Zheng X L, Zhu F R, Ong Beng S. Adv Mater, 2016, 28(31): 6687 − 6694  doi: 10.1002/adma.201600580

    40. [40]

      Mohammadi E, Zhao C K, Meng Y F, Qu G, Zhang F J, Zhao X K, Mei J G, Zuo J M, Shukla D, Diao Y. Nat Commun, 2017, (8): 16070

    41. [41]

      Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789 − 1791  doi: 10.1126/science.270.5243.1789

    42. [42]

      Li Y F. Acc Chem Res, 2012, 45(5): 723 − 733  doi: 10.1021/ar2002446

    43. [43]

      Li G, Zhu R, Yang Y. Nat Photon, 2012, 6(3): 153 − 161  doi: 10.1038/nphoton.2012.11

    44. [44]

      Li Z K, Jiang K, Yang G F, Lai J Y L, Ma T X, Zhao J B, Ma W, Yan H. Nat Commun, 2016, (7): 13094

    45. [45]

      Zhou N, Lin H, Lou S J, Yu X, Guo P J, Manley E F, Loser S, Hartnett P, Huang H, Wasielewski M R. Adv Energy Mater, 2014, 4(3): 1300785  doi: 10.1002/aenm.201300785

    46. [46]

      Bauer N, Zhang Q, Zhao J, Ye L, Kim J H, Constantinou I, Yan L, So F, Ade H, Yan H. J Mater Chem A, 2017, 5(10): 4886 − 4893  doi: 10.1039/C6TA10450A

    47. [47]

      Perry E E, Chiu C Y, Moudgil K, Schlitz R A, Takacs C J, O'Hara K A, Labram J G, Glaudell A M, Sherman J B, Barlow S. Chem Mater, 2017, 29(22): 9742 − 9750  doi: 10.1021/acs.chemmater.7b03516

    48. [48]

      Schlitz R A, Brunetti F G, Glaudell A M, Miller P L, Brady M A, Takacs C J, Hawker C J, Chabinyc M L. Adv Mater, 2014, 26(18): 2825 − 2830  doi: 10.1002/adma.v26.18

    49. [49]

      Liu J, Qiu L, Portale G, Koopmans M, ten Brink G, Hummelen J C, Koster L J A. Adv Mater, 2017, 29(36): 1701641  doi: 10.1002/adma.201701641

    50. [50]

      Qiu L, Liu J, Alessandri R, Qiu X K, Koopmans M, Havenith R W, Marrink S J, Chiechi R C, Koster L J A, Hummelen J C. J Mater Chem A, 2017, 5(40): 21234 − 21241  doi: 10.1039/C7TA06609K

    51. [51]

      Yang C Y, Jin W L, Wang J, Ding Y F, Nong S, Shi K, Lu Y, Dai Y Z, Zhuang F D, Lei T. Adv Mater, 2018, 49: 1802850

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    4. [4]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    6. [6]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    7. [7]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    8. [8]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    9. [9]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    10. [10]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    11. [11]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    12. [12]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    13. [13]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    14. [14]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    15. [15]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    16. [16]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

Metrics
  • PDF Downloads(0)
  • Abstract views(352)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return