Citation: Rongting Hu, Jue Wang, Jing Yang, Yu Ding, Guosong Chen. Micro Rings Self-assembled by Fluorescent Fusion-protein Based on Multiple Non-covalent Interactions[J]. Acta Polymerica Sinica, ;2019, 50(2): 135-146. doi: 10.11777/j.issn1000-3304.2018.18204 shu

Micro Rings Self-assembled by Fluorescent Fusion-protein Based on Multiple Non-covalent Interactions

  • Proteins are attractive building blocks for construction of variant functional materials because of their chemical and structural diversities, and intrinsic functions. As the industry of biotechnology continues to expand, so does the expression of recombinant proteins with wide varieties. In this work, we adopted the recombinant protein technique to construct a new fusion protein, GFP-SA, as the building block of self-assemblies. The purification of GFP-SA was characterized by Superdex 75 size exclusive chromatography, SDS-PAGE, and MALDI-TOF. Then, GPC and native-PAGE were used to characterize the dimerization of GFP-SA based on the hydrogen bonds between neighboring SAs. Furthermore, ITC was employed to test the binding ability between GFP-SA and biotin, which revealed KD = 0.24 μmol/L. In this study, we also designed and successfully synthesized the ligand RhYBio2, which is composed of two biotin molecules and one rhodamine B molecule. The size of GFP-SA increased rapidly to 370 nm within one minute after mixing with RhYBio2. We measured the particle size of GFP-SA/RhYBio2 mixture every few minutes until the size stabilized at around 1300 nm 2 h later. However, size variation was barely observed for the controlled samples of SA/RhYBio2 (controlled protein) and GFP-SA/YBio (controlled ligand). We hypothesized that the two biotin molecules of RhYBio2 could bind specifically with SA and align GFP-SA/RhYBio2 into nanowires, which assembled further into micro rings. Their size was measured by dynamic light scattering (DLS) while the morphology was observed intuitively on a transmission electron microscope (TEM) and a confocal microscope (CM). The characteristic results from TEM and CM suggested an uneven size distribution of the micro rings prepared, which might be attributable to the flexibility of the fusion protein GFP-SA. These micro rings of GFP-SA/RhYBio2 with fluorescence has great potential for biological applications.
  • 加载中
    1. [1]

      Sinclair J C, Davies K M, Venien-Bryan C, Noble M E M. Nat Nanotechnol, 2011, 9: 558 − 562

    2. [2]

      Ringler P, Schulz G E. Science, 2003, 5642: 106 − 109

    3. [3]

      Padilla J E, Colovos C, Yeates T O. Proc Natl Acad Sci USA, 2001, 5: 2217 − 2221

    4. [4]

      Lai Y T, King N P, Yeates T O. Trends Cell Biol, 2012, 12: 653 − 661

    5. [5]

      Bai Y, Luo Q, Liu J. Chem Soc Rev, 2016, 10: 2756 − 2767

    6. [6]

    7. [7]

    8. [8]

      Oohora K, Burazerovic S, Onoda A, Wilson Y M, Ward T R, Hayashi T. Angew Chem Int Ed, 2012, 16: 3818 − 3821

    9. [9]

      Kostiainen M A, Kasyutich O, Cornelissen J J, Nolte R J. Nat Chem, 2010, 5: 394 − 399

    10. [10]

      Kostiainen M A, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P. Nat Nanotechnol, 2013, 1: 52 − 56

    11. [11]

      Miao L, Han J, Zhang H, Zhao L, Si C, Zhang X, Hou C, Luo Q, Xu J, Liu J. ACS Nano, 2014, 4: 3743 − 3751

    12. [12]

      Salgado E N, Radford R J, Tezcan F A. Acc Chem Res, 2010, 5: 661 − 672

    13. [13]

      Brodin J D, Ambroggio X I, Tang C, Parent K N, Baker T S, Tezcan F A. Nat Chem, 2012, 5: 375 − 382

    14. [14]

      Biswas S, Kinbara K, Oya N, Ishii N, Taguchi H, Aida T. J Am Chem Soc, 2009, 22: 7556 − 7557

    15. [15]

      Bai Y, Luo Q, Zhang W, Miao L, Xu J, Li H, Liu J. J Am Chem Soc, 2013, 30: 10966 − 10969

    16. [16]

      Sakai F, Yang G, Weiss M S, Liu Y, Chen G, Jiang M. Nat Commun, 2014: 4634

    17. [17]

      Yang G, Zhang X, Kochovski Z, Zhang Y F, Dai B, Sakai F J, Jiang L, Lu Y, Ballauff M, Li X M, Liu C, Chen G S, Jiang M. J Am Chem Soc, 2016, 6: 1932 − 1937

    18. [18]

      Yang G, Ding H M, Kochovski Z, Hu R T, Lu Y, Ma Y Q, Chen G S, Jiang M. Angew Chem Int Ed, 2017, 36: 10691 − 10695

    19. [19]

      Yang G, Hu R T, Ding H M, Kochovski Z, Mei S L, Lu Y, Ma Y Q, Chen G S, Jiang M. Mat Chem Front, 2018, 9: 1642 − 1646

    20. [20]

      Qi W J, Zhang Y F, Kochovski Z, Wang J, Lu Y, Chen G S, Jiang M. Nano Res, 2018, 10: 5566 − 5572

    21. [21]

      Xu M, Liu L, Yan Q. Angew Chem Int Ed, 2018, 18: 5029 − 5032

    22. [22]

      O'Sullivan V J, Barrette-Ng I, Hommema E, Hermanson G T, Schofield M, Wu S C, Honetschlaeger C, Ng K K S, Wong S L. Plos One, 2012, 4: e35203

    23. [23]

      Qureshi M H, Yeung J C, Wu S C, Wong S L. J Biol Chem, 2001, 49: 46422 − 46428

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    10. [10]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    13. [13]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    14. [14]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

Metrics
  • PDF Downloads(0)
  • Abstract views(159)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return