Citation: You-di Zhang, Lai-tao Shi, Yi-wang Chen. Overview and Outlook of Random Copolymerization Strategy for Designing Polymer Solar Cells[J]. Acta Polymerica Sinica, ;2019, 50(1): 13-26. doi: 10.11777/j.issn1000-3304.2018.18193 shu

Overview and Outlook of Random Copolymerization Strategy for Designing Polymer Solar Cells

  • Corresponding author: Yi-wang Chen, ywchen@ncu.edu.cn
  • Received Date: 31 August 2018
    Revised Date: 30 October 2018
    Available Online: 11 December 2018

  • Organic polymer solar cells which have achieved rapid development in recent years, therefore, attract wide attention around the world. At present, compared with fullerene polymer solar cells, the energy conversion efficiency (PCE) of non-fullerene polymer solar cells has already exceeded 14%. Organic photovoltaic (OPV) materials were widely studied including small-molecule/polymer donors and small-molecule/polymer acceptors. However, the studies on random conjugated polymer donors and acceptors are relatively rare. By introducing the third component into D-A conjugated polymer system to construct random conjugated polymer donor or acceptor, the absorption and the electron orbital energy levels could be well adjusted, and the open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) could be improved. Moreover, this strategy could also decrease the crystallinity of D-A polymer donor or acceptor availably, promoting the formation of better blend film morphology, appropriate phase separation size, and increase the electron or hole mobility. In order to adjust blend topography, the design and synthesis of molecular structures played an important role to improve the PCE of organic solar cells. Adding different ratios of electron-rich unit or electron-deficient unit to lower the strong crystallinity of polymers, which resulted in large phase separation, is not conducive to effective charge transport, thus reducing the efficiency of organic photovoltaics. Based on this situation, fullerene/non-fullerene polymer organic solar cells with p-type random conjugated polymer as electron donor and n-type ternary conjugated polymer as electron acceptor are summarized. At present, the total polymer photovoltaic efficiency based on the polymer donor (PBDB-T) and the random conjugated polymer acceptor (PNDI-2T-TR) reach up to 8.13%, which is one of the highest energy conversion efficiencies of polymer organic solar cells using the random copolymer as the electron acceptor so far, showing a good development prospect. Finally, the future development of the random conjugated polymer solar cells is summarized and prospected in this review.
  • 加载中
    1. [1]

      Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789 − 1791  doi: 10.1126/science.270.5243.1789

    2. [2]

      Li Y. Acc Chem Res, 2012, 45(5): 723 − 733  doi: 10.1021/ar2002446

    3. [3]

      Thompson B C, Fréchet J M J. Angew Chem Int Ed, 2008, 47(1): 58 − 77  doi: 10.1002/(ISSN)1521-3773

    4. [4]

      Li G, Zhu R, Yang Y. Nat Photon, 2012, 6(3): 153 − 161  doi: 10.1038/nphoton.2012.11

    5. [5]

      Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y. Nat Commun, 2018, 9(1): 743  doi: 10.1038/s41467-018-03207-x

    6. [6]

      Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30(20): 1800868  doi: 10.1002/adma.v30.20

    7. [7]

      Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21): 7148 − 7151  doi: 10.1021/jacs.7b02677

    8. [8]

      Kolhe N B, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe S A. Chem Mater, 2018, 30(18): 6540 − 6548  doi: 10.1021/acs.chemmater.8b03229

    9. [9]

      You H, Kim D, Cho H H, Lee C, Chong S, Ahn N Y, Seo M, Kim J, Kim F S, Kim B J. Adv Funct Mater, 2018, 28(39): 1803613  doi: 10.1002/adfm.v28.39

    10. [10]

      Zhao R, Dou C, Xie Z, Liu J, Wang L. Angew Chem Int Ed, 2016, 55(17): 5313 − 5317  doi: 10.1002/anie.201601305

    11. [11]

      Zhang T, Zeng G, Ye F, Zhao X, Yang X. Adv Energy Mater, 2018, 8(25): 1801387  doi: 10.1002/aenm.v8.25

    12. [12]

      Zhang M, Gao W, Zhang F, Mi Y, Wang W, An Q, Wang J, Ma X, Miao J, Hu Z, Liu X, Zhang J, Yang C. Energy Environ Sci, 2018, 11(4): 841 − 849  doi: 10.1039/C8EE00215K

    13. [13]

      Li J, Yang J, Hu J, Chen Y, Xiao B, Zhou E. Chem Commun, 2018, 54(76): 10770 − 10773  doi: 10.1039/C8CC06198J

    14. [14]

      Li Y. Chem Asian J, 2013, 8(10): 2316 − 2328  doi: 10.1002/asia.201300600

    15. [15]

      He Y, Li Y. Phys Chem Chem Phys, 2011, 13(6): 1970 − 1983  doi: 10.1039/C0CP01178A

    16. [16]

      Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293  doi: 10.1038/ncomms6293

    17. [17]

      Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang X F, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28(44): 9811 − 9818  doi: 10.1002/adma.201603178

    18. [18]

      Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58(2): 248 − 256  doi: 10.1007/s11426-014-5273-x

    19. [19]

      Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1(2): 15027  doi: 10.1038/nenergy.2015.27

    20. [20]

      Lin Y, Zhan X. Mater Horiz, 2014, 1(5): 470 − 488  doi: 10.1039/C4MH00042K

    21. [21]

      Chen S, Cho H J, Lee J, Yang Y, Zhang Z G, Li Y, Yang C. Adv Energy Mater, 2017, 7(21): 1701125  doi: 10.1002/aenm.201701125

    22. [22]

      Jeong M, Chen S, Lee S M, Wang Z, Yang Y, Zhang Z G, Zhang C, Xiao M, Li Y, Yang C. Adv Energy Mater, 2018, 8(7): 1702166  doi: 10.1002/aenm.201702166

    23. [23]

      Cui C, Li Y, Li Y. Adv Energy Mater, 2017, 7(10): 1601251  doi: 10.1002/aenm.201601251

    24. [24]

      Nielsen C B, Holliday S, Chen H Y, Cryer S J, McCulloch I. Acc Chem Res, 2015, 48(11): 2803 − 2812  doi: 10.1021/acs.accounts.5b00199

    25. [25]

      Yan C, Barlow S, Wang Z, Yan H, Jen A K Y, Marder S R, Zhan X. Nat Rev Mater, 2018, 3: 18003  doi: 10.1038/natrevmats.2018.3

    26. [26]

      Zhang G, Zhao J, Chow P C Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118(7): 3447 − 3507  doi: 10.1021/acs.chemrev.7b00535

    27. [27]

      Yu G, Heeger A J. J Appl Phys, 1995, 78(7): 4510 − 4515  doi: 10.1063/1.359792

    28. [28]

      Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z A, Hou J. Macromolecules, 2012, 45(24): 9611 − 9617  doi: 10.1021/ma301900h

    29. [29]

      Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27(7): 1170 − 1174  doi: 10.1002/adma.201404317

    30. [30]

      Yao K, Chen L, Chen Y, Li F, Ren X, Wang H, Li Y. Polym Chem, 2012, 3(3): 710 − 717  doi: 10.1039/c2py00523a

    31. [31]

      Chen L, Li X, Chen Y. Polym Chem, 2013, 4(23): 5637 − 5644  doi: 10.1039/c3py00693j

    32. [32]

      Chen X, Chen L, Yao K, Chen Y. ACS Appl Mater Interfaces, 2013, 5(17): 8321 − 8328  doi: 10.1021/am402031v

    33. [33]

      Chen X, Chen L, Chen Y. J Polym Sci, Part A: Polym Chem, 2013, 51(19): 4156 − 4166  doi: 10.1002/pola.26828

    34. [34]

      Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell T P, Yip H L, Huang F, Cao Y. Chem Mater, 2014, 26(9): 3009 − 3017  doi: 10.1021/cm500953e

    35. [35]

      Chen L, Peng S, Chen Y. ACS Appl Mater Interfaces, 2014, 6(11): 8115 − 8123  doi: 10.1021/am501831z

    36. [36]

      Deng Z, Chen L, Wu F, Chen Y. J Phys Chem C, 2014, 118(12): 6038 − 6045  doi: 10.1021/jp411286w

    37. [37]

      Li C, Chen Z, Wu F, Chen L, Chen Y. Synth Met, 2017, 226: 71 − 79  doi: 10.1016/j.synthmet.2017.02.003

    38. [38]

      Duan C, Gao K, van Franeker J J, Liu F, Wienk M M, Janssen R A J. J Am Chem Soc, 2016, 138(34): 10782 − 10785  doi: 10.1021/jacs.6b06418

    39. [39]

      Kelly M A, Roland S, Zhang Q, Lee Y, Kabius B, Wang Q, Gomez E D, Neher D, You W. J Phys Chem C, 2017, 121(4): 2059 − 2068  doi: 10.1021/acs.jpcc.6b10993

    40. [40]

      Liao X, Zhang L, Chen L, Hu X, Ai Q, Ma W, Chen Y. Nano Energy, 2017, 37: 32 − 39  doi: 10.1016/j.nanoen.2017.05.008

    41. [41]

      Shin I, Ahn H j, Yun J H, Jo J W, Park S, Joe S Y, Bang J, Son H J. Adv Energy Mater, 2018, 8(7): 1701405  doi: 10.1002/aenm.201701405

    42. [42]

      Zhang A, Li C, Yang F, Zhang J, Wang Z, Wei Z, Li W. Angew Chem Int Ed, 2017, 56(10): 2694 − 2698  doi: 10.1002/anie.201612090

    43. [43]

      Duan Y, Xu X, Yan H, Wu W, Li Z, Peng Q. Adv Mater, 2017, 29(7): 1605115  doi: 10.1002/adma.201605115

    44. [44]

      Gao G, Liang N, Geng H, Jiang W, Fu H, Feng J, Hou J, Feng X, Wang Z. J Am Chem Soc, 2017, 139(44): 15914 − 15920  doi: 10.1021/jacs.7b09140

    45. [45]

      Zhang J, Li Y, Huang J, Hu H, Zhang G, Ma T, Chow P C Y, Ade H, Pan D, Yan H. J Am Chem Soc, 2017, 139(45): 16092 − 16095  doi: 10.1021/jacs.7b09998

    46. [46]

      Wu Q, Zhao D, Schneider A M, Chen W, Yu L. J Am Chem Soc, 2016, 138(23): 7248 − 7251  doi: 10.1021/jacs.6b03562

    47. [47]

      Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139(9): 3356 − 3359  doi: 10.1021/jacs.7b00566

    48. [48]

      Gao H-H, Sun Y, Wan X, Kan B, Ke X, Zhang H, Li C, Chen Y. Sci China Mater, 2017, 60(9): 819 − 828  doi: 10.1007/s40843-017-9084-x

    49. [49]

      Wang J, Wang W, Wang X, Wu Y, Zhang Q, Yan C, Ma W, You W, Zhan X. Adv Mater, 2017, 29(35): 1702125  doi: 10.1002/adma.201702125

    50. [50]

    51. [51]

      Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E. Adv Energy Mater, 2017, 7(8): 1602269  doi: 10.1002/aenm.201602269

    52. [52]

      Kim J Y, Park S, Lee S, Ahn H, Joe S Y, Kim B J, Son H J. Adv Energy Mater, 1801601

    53. [53]

      Duan C, Li Z, Pang S, Zhu Y L, Lin B, Colberts F J M, Leenaers P J, Wang E, Sun Z Y, Ma W, Meskers S C J, Janssen R A J. Solar RRL, 1800247

    54. [54]

      Li K, Hu Z, Zeng Z, Huang Z, Zhong W, Ying L, Huang F, Cao Y. Org Electron, 2018, 57: 317 − 322  doi: 10.1016/j.orgel.2018.03.005

    55. [55]

      Huo L, Xue X, Liu T, Xiong W, Qi F, Fan B, Xie D, Liu F, Yang C, Sun Y. Chem Mater, 2018, 30(10): 3294 − 3300  doi: 10.1021/acs.chemmater.8b00510

    56. [56]

      Hwang Y-J, Earmme T, Courtright B A E, Eberle F N, Jenekhe S A. J Am Chem Soc, 2015, 137(13): 4424 − 4434  doi: 10.1021/ja513260w

    57. [57]

      Li Z, Xu X, Zhang W, Meng X, Genene Z, Ma W, Mammo W, Yartsev A, Andersson M R, Janssen R A J, Wang E. Energy Environ Sci, 2017, 10(10): 2212 − 2221  doi: 10.1039/C7EE01858D

    58. [58]

      Chen D, Yao J, Chen L, Yin J, Lv R, Huang B, Liu S, Zhang Z G, Yang C, Chen Y, Li Y. Angew Chem Int Ed, 2018, 57(17): 4580 − 4584  doi: 10.1002/anie.201800035

    59. [59]

      Liu X, Zhang C, Duan C, Li M, Hu Z, Wang J, Liu F, Li N, Brabec C J, Janssen R A J, Bazan G C, Huang F, Cao Y. J Am Chem Soc, 2018, 140(28): 8934 − 8943  doi: 10.1021/jacs.8b05038

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    8. [8]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    9. [9]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    13. [13]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    19. [19]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(0)
  • Abstract views(106)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return