Citation: Chen Lin, Xu-ming Xie. Preparation of GO/PMMA Nanocomposites with Significantly Increased Properties through Metal Ion Coordination[J]. Acta Polymerica Sinica, ;2019, 50(2): 170-178. doi: 10.11777/j.issn1000-3304.2018.18178 shu

Preparation of GO/PMMA Nanocomposites with Significantly Increased Properties through Metal Ion Coordination

  • Corresponding author: Xu-ming Xie, xxm-dce@mail.tsinghua.edu.cn
  • Received Date: 13 August 2018
    Revised Date: 13 September 2018
    Available Online: 6 December 2018

  • Metal ion coordinated GO/PMMA composites have been prepared by melt method. The interfacial interaction between the nanofiller and the polymer matrix is significantly increased due to the coordination bonding. As a result, the mechanical and thermal properties of the composites are highly improved. To study the property variation with the change of metal ions and preparation methods, two different metal ions (Cu(II) and Fe(III)) were added into the GO/PMMA system, respectively, and the composites were prepared by two different methods—the direct-melt method and the master-batch method. Fourier transform infrared spectroscopy (FTIR), Raman spectra, X-ray diffraction (XRD), scanning electron microscopy (SEM), tensile test, and thermogravimetic analysis (TGA) were performed to study the structures and properties of the composites. The FTIR results showed that GO and PMMA are successfully bridged via coordination bonding, for the characteristic peaks showed obvious blue shifts. Raman spectra indicated that coordination causes no extra defect to the GO sheets. SEM images showed that the GO sheets could be homogeneously dispersed in PMMA through master-batch method, while a poor dispersion through direct-melt method. From the tensile test results, it could be seen that the composites prepared by master-batch method had a better mechanical performance than those prepared by direct-melt method because of the different dispersion states. Fe(III)-coordinated composites have better mechanical performance than Cu(II)-coordinated composites do, due to the higher valence state of iron ions. The Young’s modulus and tensile strength of Fe(III)-0.5 wt% GO/PMMA composite are 29.6% and 31.8%, respectively, higher than those of the composite with only GO, and 75.0% and 35.7%, respectively, higher than those of neat PMMA. The temperature of maximum weight loss of Fe(III)-0.5 wt% GO/PMMA is 26 °C higher than that of GO/PMMA, and 82 °C higher than that of neat PMMA. This metal ion coordination method is efficient and simple, and can easily bridge nanofillers and polymer matrixes containing polar groups. This approach opens up a new strategy for improving the performance of many kinds of nanocomposites.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666 − 669  doi: 10.1126/science.1102896

    2. [2]

      Nair R, Blake P, Grigorenko A, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320: 1308 − 1308  doi: 10.1126/science.1156965

    3. [3]

      Ziegler K. Phys Rev B, 2007, 75: 233407  doi: 10.1103/PhysRevB.75.233407

    4. [4]

      Weitz R T, Yacoby A. Nat Nanotechnol, 2010, 5: 699 − 700  doi: 10.1038/nnano.2010.201

    5. [5]

      Geim A K. Science, 2009, 324: 1530 − 1534  doi: 10.1126/science.1158877

    6. [6]

      Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321: 385 − 388  doi: 10.1126/science.1157996

    7. [7]

      Jiang L, Shen X P, Wu J L, Shen K C. J Appl Polym Sci, 2010, 118: 275 − 279  doi: 10.1002/app.v118:1

    8. [8]

      Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J H, Lee Y H. Adv Funct Mater, 2009, 19: 1987 − 1992  doi: 10.1002/adfm.v19:12

    9. [9]

      Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. J Phys Chem C, 2008, 112: 8192 − 8195  doi: 10.1021/jp710931h

    10. [10]

      Pham V H, Cuong T V. Nguyen-phan T D, Pham D H, Kim E J, Hur S H, Shin E W, Kim S, Chung J S. Chem Commun, 2010, 46: 4375 − 4377  doi: 10.1039/c0cc00363h

    11. [11]

      Xu Y, Hong W, Bai H, Li C, Shi G. Carbon, 2009, 47: 3538 − 3543  doi: 10.1016/j.carbon.2009.08.022

    12. [12]

      Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Adv Funct Mater, 2009, 19: 2297 − 2302  doi: 10.1002/adfm.v19:14

    13. [13]

      Yu D S, Kuila T, Kim N H, Lee J H. Chem Eng J, 2014, 245: 311 − 322  doi: 10.1016/j.cej.2014.02.025

    14. [14]

      Chen J, Li Y, Zhang Y, Zhu Y. J Appl Polym Sci, 2015, 132: 42000

    15. [15]

      Lin C, Liu Y T, Xie X M. Aust J Chem, 2014, 67: 121 − 126  doi: 10.1071/CH13339

    16. [16]

      Pan L, Liu Y T, Xie X M, Zhu X D. Chem Asian J, 2014, 9: 1519 − 1524  doi: 10.1002/asia.v9.6

    17. [17]

      Bai H, Li C, Wang X, Shi G. J Phys Chem C, 2011, 115: 5545 − 5551

    18. [18]

    19. [19]

      Zhong M, Liu X Y, Shi F K, Zhang L Q, Wang X P, Cheetham A G, Cui H G, Xie X M. Soft Matter, 2015, 11: 4235 − 4241  doi: 10.1039/C5SM00493D

    20. [20]

      Liu Y T, Feng Q P, Xie X M, Xe X Y. Carbon, 2011, 49: 3371 − 3375  doi: 10.1016/j.carbon.2011.03.055

    21. [21]

      Goncalves G, Marques P A A P, Timmons A B, Bdkin I, Singh M K, Emami N, Gracio J. J Mater Chem, 2010, 20: 9927 − 9934  doi: 10.1039/c0jm01674h

    22. [22]

      Zhong M, Liu Y T, Xie X M. J Mater Chem B, 2015, 3: 4001 − 4008  doi: 10.1039/C5TB00075K

    23. [23]

      Liu Y T, Tan Z, Xie X M, Wang Z F, Ye X Y. Chem Asian J, 2013, 8: 817 − 823  doi: 10.1002/asia.v8.4

    24. [24]

      Jurow M, Manichev V, Pabon C, Hageman B, Matolina Y, Drain C M. Inorg Chem, 2013, 52: 10576 − 10582  doi: 10.1021/ic401563f

    25. [25]

      Park S, Lee K S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. ACS Nano, 2008, 2: 572 − 578  doi: 10.1021/nn700349a

    26. [26]

      Cong H P, Wang P, Yu S H. Small, 2014, 10: 448 − 453  doi: 10.1002/smll.v10.3

    27. [27]

      Cong H P, Wang P, Yu S H. Chem Mater, 2013, 25: 3357 − 3362  doi: 10.1021/cm401919c

    28. [28]

      Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45: 1558 − 1565  doi: 10.1016/j.carbon.2007.02.034

    29. [29]

      Shen J F, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M X. Chem Mater, 2009, 21: 3514 − 3520  doi: 10.1021/cm901247t

    30. [30]

      Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem Soc Rev, 2010, 39: 228 − 240  doi: 10.1039/B917103G

    31. [31]

      Vuluga D, Thomassin J M, Molenberg I, Huynen I, Gilbert B, Jerome C, Alexandre M, Detrembleur C. Chem Commun, 2011, 47: 2544 − 2546  doi: 10.1039/c0cc04623j

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    8. [8]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    12. [12]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(175)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return