Citation: Hua-zhang Guo, Ze-sheng An. Enzyme Catalysis for RAFT Polymerization and Functionalization: a Sustainable Strategy for Synthesis of Precision Polymers[J]. Acta Polymerica Sinica, ;2018, 0(10): 1253-1261. doi: 10.11777/j.issn1000-3304.2018.18120 shu

Enzyme Catalysis for RAFT Polymerization and Functionalization: a Sustainable Strategy for Synthesis of Precision Polymers

  • Corresponding author: Ze-sheng An, an.zesheng@shu.edu.cn
  • Received Date: 14 May 2018
    Revised Date: 28 May 2018
    Available Online: 25 June 2018

  • Enzymes are well-known biological catalysts able to catalyze chemical processes in a mild, efficient and selective manner. Controlled radical polymerization (CRP) techniques have revolutionized the field of polymer chemistry, enabling unprecedented access to various polymer architectures with controlled molar mass, topology, sequence, composition and functionality. The combination of enzyme catalysis and reversible addition-fragmentation chain transfer (RAFT) polymerization is a sustainable strategy for synthesis and functionalization of precision polymers, which has attracted extensive attention in the field of polymer syntheses in recent years. Our group has carried out the following series of work in this field. (i) Enzyme catalysis has been used to initiate RAFT polymerization for synthesis of well-defined polymers with controlled molar mass and low dispersity in benign solvents under mild conditions. (ii) Enzyme cascade catalysis has enabled the synthesis of multiblock and ultrahigh-molecular-weight (UHMW) polymers with oxygen tolerance. (iii) Interestingly, the promiscuity of enzyme can be employed for synthesis and functionalization of well-defined polymers via three different catalytic reactions mediated by one single enzyme. In this feature article, we highlight the recent development on enzyme catalysis for RAFT polymerization and functionalization. At last, perspectives in this field and some future research directions along this exciting theme are proposed.
  • 加载中
    1. [1]

      Matyjaszewski K, Tsarevsky N V. Nat Chem, 2009, 1(4): 276 − 288  doi: 10.1038/nchem.257

    2. [2]

      Matyjaszewski K, Tsarevsky N V. J Am Chem Soc, 2014, 136(18): 6513 − 6533  doi: 10.1021/ja408069v

    3. [3]

      Moad G, Rizzardo E, Thang S H. Acc Chem Res, 2008, 41(9): 1133 − 1142  doi: 10.1021/ar800075n

    4. [4]

      Hawker C J, Bosman A W, Harth E. Chem Rev, 2001, 101(12): 3661 − 3688  doi: 10.1021/cr990119u

    5. [5]

      Allan L E N, Perry M R, Shaver M P. Prog Polym Sci, 2012, 37(1): 127 − 156  doi: 10.1016/j.progpolymsci.2011.07.004

    6. [6]

      Rosen B M, Percec V. Chem Rev, 2009, 109(11): 5069 − 5119  doi: 10.1021/cr900024j

    7. [7]

      Matyjaszewski K. Macromolecules, 2012, 45(10): 4015 − 4039  doi: 10.1021/ma3001719

    8. [8]

      Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Rzizardo E, Thang S H. Macromolecules, 1998, 31(16): 5559 − 5562  doi: 10.1021/ma9804951

    9. [9]

      Treat N J, Sprafke H, Kramer J W, Clark P G, Barton B E, Read de Alaniz J, Fors B P, Hawker C J. J Am Chem Soc, 2014, 136(45): 16096 − 16101  doi: 10.1021/ja510389m

    10. [10]

      Engelis N G, Anastasaki A, Nurumbetov G, Truong N P, Nikolaou V, Shegiwal A, Whittaker M R, Davis T P,  doi: 10.1038/nchem.2634

    11. [11]

      Chen M, MacLeod M J, Johnson J A. ACS Macro Lett, 2015, 4(5): 566 − 569  doi: 10.1021/acsmacrolett.5b00241

    12. [12]

      McKenzie T G, Fu Q, Wong E H H, Dunstan D E, Qiao G G. Macromolecules, 2015, 48(12): 3864 − 3872  doi: 10.1021/acs.macromol.5b00965

    13. [13]

      Xu J T, Jung K, Atme A, Shanmugam S, Boyer C. J Am Chem Soc, 2014, 136(14): 5508 − 5519  doi: 10.1021/ja501745g

    14. [14]

      Pan X C, Malhotra N, Simakova A, Wang Z Y, Konkolewicz D, Matyjaszewski K. J Am Chem Soc, 2015, 137(49): 15430 − 15433  doi: 10.1021/jacs.5b11599

    15. [15]

      Peterson B M, Lin S, Fors B P. J Am Chem Soc, 2018, 140(6): 2076 − 2079  doi: 10.1021/jacs.8b00173

    16. [16]

      Sang W, Xu M M, Yan Q. ACS Macro Lett, 2017, 6(12): 1337 − 1341  doi: 10.1021/acsmacrolett.7b00886

    17. [17]

      Fantin M, Isse A A, Venzo A, Gennaro A, Matyjaszewski K. J Am Chem Soc, 2016, 138(23): 7216 − 7219  doi: 10.1021/jacs.6b01935

    18. [18]

      Kottisch V, Michaudel Q, Fors B P. J Am Chem Soc, 2017, 139(31): 10665 − 10668  doi: 10.1021/jacs.7b06661

    19. [19]

      Ohtsuki A, Lei L, Tanishima M, Goto A, Kaji H. J Am Chem Soc, 2015, 137(16): 5610 − 5617  doi: 10.1021/jacs.5b02617

    20. [20]

      Aoshima H, Uchiyama M, Satoh K, Kamigaito M. Angew Chem Int Ed, 2014, 53(41): 10932 − 10936  doi: 10.1002/anie.201406590

    21. [21]

      Richter M, Schulenburg C, Jankowska D, Heck T, Faccio G. Mater Today, 2015, 18(8): 459 − 467  doi: 10.1016/j.mattod.2015.04.002

    22. [22]

      Wang X, Chen S S, Wu D B, Wu Q, Wei Q C, He B, Lu Q H, Wang Q G. Adv Mater, 2018, 30(17): e1705668  doi: 10.1002/adma.v30.17

    23. [23]

      Boyer C, Corrigan N A, Jung K, Nguyen D, Nguyen T K, Adnan N N M, Oliver S, Shanmugam S, Yeow J. Chem Rev, 2016, 116(4): 1803 − 1949  doi: 10.1021/acs.chemrev.5b00396

    24. [24]

      Shoda S I, Uyama H, Kadokawa J I, Kimura S, Kobayashi S. Chem Rev, 2016, 116(4): 2307 − 2413  doi: 10.1021/acs.chemrev.5b00472

    25. [25]

      Ng Y H, di Lena F, Chai C L L. Polym Chem, 2011, 2(3): 589 − 594  doi: 10.1039/C0PY00139B

    26. [26]

      Ng Y H, di Lena F, Chai C L L. Chem Commun, 2011, 47(22): 6464 − 6466  doi: 10.1039/c1cc10989h

    27. [27]

      Sigg S J, Seidi F, Renggli K, Silva T B, Kali G, Bruns N. Macromol Rapid Commun, 2011, 32(21): 1710 − 1715  doi: 10.1002/marc.201100349

    28. [28]

      Silva T B, Spulber M, Kocik M K, Seidi F, Charan H, Rother M, Sigg S J, Renggli K, Kali G, Bruns N. Biomacromolecules, 2013, 14(8): 2703 − 2712  doi: 10.1021/bm400556x

    29. [29]

      Fodor C, Gajewska B, Rifaie-Graham O, Apebende E A, Pollard J, Bruns N. Polym Chem, 2016, 7(43): 6617 − 6625  doi: 10.1039/C6PY01261B

    30. [30]

      Fantin M, Isse A A, Gennaro A, Matyjaszewski K. Macromolecules, 2015, 48(19): 6862 − 6875  doi: 10.1021/acs.macromol.5b01454

    31. [31]

      Ligon S C, Husár B, Wutzel H, Holman R, Liska R. Chem Rev, 2014, 114(1): 557 − 589  doi: 10.1021/cr3005197

    32. [32]

      Monti D, Ottolina G, Carrea G, Riva S. Chem Rev, 2011, 111(7): 4111 − 4140  doi: 10.1021/cr100334x

    33. [33]

      Emery O, Lalot T, Brigodiot M, Maréchal E. J Polym Sci, Part A: Polym Chem, 1997, 35(15): 3331 − 3333  doi: 10.1002/(ISSN)1099-0518

    34. [34]

      Zhang B H, Wang X J, Zhu A Q, Ma K, Lv Y, Wang X, An Z S. Macromolecules, 2015, 48(21): 7792 − 7802  doi: 10.1021/acs.macromol.5b01893

    35. [35]

      Danielson A P, Kuren D B V, Lucius M E, Makaroff K, Williams C, Page R C, Berberich J A, Konkolewicz D. Macromol Rapid Commun, 2016, 37(4): 362 − 367  doi: 10.1002/marc.v37.4

    36. [36]

      Iwata H, Hata Y, Matsuda T, Ikada Y. J Polym Sci, Part A: Polym Chem, 1991, 29(8): 1217 − 1218  doi: 10.1002/pola.1991.080290818

    37. [37]

      Johnson L M, Fairbanks B D, Anseth K S, Bowman C N. Biomacromolecules, 2009, 10(11): 3114 − 3121  doi: 10.1021/bm900846m

    38. [38]

      Oytun F, Kahveci M U, Yagci Y. J Polym Sci, Part A: Polym Chem, 2013, 51(8): 1685 − 1689  doi: 10.1002/pola.26554

    39. [39]

      Chapman R, Gormley A J, Herpoldt K L, Stevens M M. Macromolecules, 2014, 47(24): 8541 − 8547  doi: 10.1021/ma5021209

    40. [40]

      Chapman R, Gormley A J, Stenzel M H, Stevens M M. Angew Chem Int Ed, 2016, 55(14): 4500 − 4503  doi: 10.1002/anie.201600112

    41. [41]

      Lv Y, Liu Z F, Zhu A Q, An Z S. J Polym Sci, Part A: Polym Chem, 2017, 55(1): 164 − 174  doi: 10.1002/pola.v55.1

    42. [42]

      Tan J B, Xu Q, Li X L, He J, Zhang Y X, Dai X C, Yu L L, Zeng R M, Zhang L. Macromol Rapid Commun, 2018: e1700871

    43. [43]

      Tan J B, Liu D D, Bai Y H, Huang C D, Li X L, He J, Xu Q, Zhang L. Macromolecules, 2017, 50(15): 5798 − 5806  doi: 10.1021/acs.macromol.7b01219

    44. [44]

      Enciso A E, Fu L Y, Russell A J, Matyjaszewski K. Angew Chem Int Ed, 2018, 57(4): 933 − 936  doi: 10.1002/anie.201711105

    45. [45]

      Schneiderman D K, Ting J M, Purchel A A, Miranda R Jr, Tirrell M V, Reineke T M, Rowan S J. ACS Macro Lett, 2018, 7(4): 406 − 411  doi: 10.1021/acsmacrolett.8b00069

    46. [46]

      Giffhorn F. Appl Microbiol Biotechnol, 2000, 54(6): 727 − 740  doi: 10.1007/s002530000446

    47. [47]

      Kalra B, Gross R A. Biomacromolecules, 2000, 1(3): 501 − 505  doi: 10.1021/bm005576v

    48. [48]

      Teixeira D, Lalot T, Brigodiot M, Maréchal E. Macromolecules, 1999, 32(1): 70 − 72  doi: 10.1021/ma980872+

    49. [49]

      Liu Z F, Lv Y, An Z S. Angew Chem Int Ed, 2017, 56(44): 13852 − 13856  doi: 10.1002/anie.201707993

    50. [50]

      Zhang Q, Collins J, Anastasaki A, Wallis R, Mitchell D A, Becer C R, Haddleton D M. Angew Chem Int Ed, 2013, 52(16): 4435 − 4439  doi: 10.1002/anie.201300068

    51. [51]

      Mapas J K D, Thomay T, Cartwright A N, Ilavsky J, Rzayev J. Macromolecules, 2016, 49(10): 3733 − 3738  doi: 10.1021/acs.macromol.6b00863

    52. [52]

      Hill M R, Carmean R N, Sumerlin B S. Macromolecules, 2015, 48(16): 5459 − 5469  doi: 10.1021/acs.macromol.5b00342

    53. [53]

      Kurioka H, Komatsu I, Uyama H, Kobayashi S. Macromol Rapid Commun, 1994, 15(6): 507 − 510  doi: 10.1002/marc.1994.030150609

    54. [54]

      Alva K S, Marx K A, Kumar J, Tripathy S K. Macromol Rapid Commun, 1996, 17(12): 859 − 863  doi: 10.1002/marc.1996.030171203

    55. [55]

      Ma K, An Z S. Macromol Rapid Commun, 2016, 37(19): 1593 − 1597  doi: 10.1002/marc.v37.19

    56. [56]

      Obinger C, Burner U, Ebermann R. Phyton, 1997, 37: 219 − 226

    57. [57]

      Gantumur E, Sakai S, Nakahata M, Taya M. ACS Macro Lett, 2017, 6(5): 485 − 488  doi: 10.1021/acsmacrolett.7b00122

    58. [58]

      Zavada S R, McHardy N R, Scott T F. J Mater Chem B, 2014, 2(17): 2598 − 2605  doi: 10.1039/C3TB21794A

    59. [59]

      Singh S, Topuz F, Hahn K, Albrecht K, Groll J. Angew Chem Int Ed, 2013, 52(10): 3000 − 3003  doi: 10.1002/anie.201206266

    60. [60]

      Zhang H, Trout W S, Liu S, Andrade G A, Hudson D A, Scinto S L, Dicker K T, Li Y, Lazouski N, Rosenthal J, Thorpe C, Jia X Q, Fox J M. J Am Chem Soc, 2016, 138(18): 5978 − 5983  doi: 10.1021/jacs.6b02168

    61. [61]

      Liu Z F, Lv Y, Zhu A Q, An Z S. ACS Macro Lett, 2017, 7(1): 1 − 6

  • 加载中
    1. [1]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    2. [2]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    14. [14]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    15. [15]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

Metrics
  • PDF Downloads(0)
  • Abstract views(93)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return