Citation: Jun-qing Song, Yi-xin Liu, Hong-dong Zhang. Theoretical Study on Defect Removal in Block Copolymer Thin Films under Soft Confinement[J]. Acta Polymerica Sinica, ;2018, 0(12): 1548-1557. doi: 10.11777/j.issn1000-3304.2018.18097 shu

Theoretical Study on Defect Removal in Block Copolymer Thin Films under Soft Confinement

  • Corresponding author: Yi-xin Liu, lyx@fudan.edu.cn
  • Received Date: 29 March 2018
    Revised Date: 24 April 2018
    Available Online: 17 July 2018

  • Understanding the defect removal process is crucial for the fabrication of defect-free self-assembled structures in block copolymer thin films. In this study, the removal of the dislocation dipole defect in thin films of perpendicular lamellar block copolymers on substrates modified by grafting polymers has been extensively studied. As revealed in previous studies, the " bridge” structure, which converts the slow hopping diffusion of block copolymer chains to fast interfacial diffusion, is a key factor to understand the mechanism of the defect removal process. Polymer grafting onto substrates is a widely accepted way to control domain orientation and fabricate surface pattern for directed self-assembly (DSA). However, the role of the grafted polymers on defect removal is unclear. In this study, the string method coupled with the self-consistent field theory (SCFT) is used to explore the influence of grafted polymers on the removal of a dislocation dipole in lamellar-froming thin films assembled by symmetric AB diblock copoymers. It is found that the " immersion effect” and the " rearrangement effect” introduced by the grafted polymers can facilitate the hopping diffusion of the block copolymer chains through reducing the effective χAB, thus making the formation of the bridge structure easier. The decrease of the softness of the brush layer (γ) will enhance these two effects and reduce the energy barrier of the transition state of the defect removal process. In the limit of γ = 0, the bridge structure is found to already exist in the dislocation dipole near the brush layer, leading to a diminishing energy barrier of the removal process. Using the symmetric PS-b-PMMA with a number-average molecular weight of ≈ 5.1 × 104 at 195 °C as an example, we estimated the annealing time required to eliminate the dislocation dipole by assuming the diffusion coefficient of the hopping diffusion of block copolymers being D ≈ 10−13 cm2/s. The annealing time are estimated to be τ = 91.4 s and 150.9 s for extremely soft confinement (γ = 0) and intermediate soft confinement (γ = 30), respectively. During the defect removal process, the brush layer will redistribute its density along the normal and the lateral directions of the substrate in response to the structural evolution of the thin film due to the " rearrangement effect”. Thus, the morphology of the brush layer reflects the microstructure of the thin film near the bottom substrate.
  • 加载中
    1. [1]

      Matsen M W, Bates F S. Macromolecules, 1996, 29(23): 7641 − 7644

    2. [2]

      Khandpur A K, Forster S, Bates F S, Hamley I W, Ryan A J, Bras W, Almdal K, Mortensen K. Macromolecules, 1995, 28(26): 8796 − 8806

    3. [3]

      Xie N, Liu M J, Deng H L, Li W H, Qiu F, Shi A C. J Am Chem Soc, 2014, 136(8): 2974 − 2977

    4. [4]

      Park C, Yoon J, Thomas E L. Polymer, 2003, 44(22): 6725 − 6760

    5. [5]

      Ji S X, Wan L, Liu C C, Nealey P F. Prog Polym Sci, 2016, 54-55: 76 − 127

    6. [6]

      Li W H, Muller M. Annu Rev Chem Biomol Eng, 2015, 6: 187 − 216

    7. [7]

      Matsen M W. J Chem Phys, 1997, 106(18): 7781 − 7791

    8. [8]

      Turner M S. Phys Rev Lett, 1992, 69(12): 1788 − 1791

    9. [9]

      Walton D G, Kellogg G J, Mayes A M, Lambooy P, Russell T P. Macromolecules, 1994, 27(21): 6225 − 6228

    10. [10]

      Mansky P, Liu Y, Huang E, Russell T P, Hawker C J. Science, 1997, 275(5305): 1458 − 1460

    11. [11]

      Han E, Stuen K O, La Y H, Nealey P F, Gopalan P. Macromolecules, 2008, 41(23): 9090 − 9097

    12. [12]

      Onses M S, Ramirez-Hernandez A, Hur S M, Sutanto E, Williamson L, Alleyne A G, Nealey P F, de Pablo J J, Rogers J A. ACS Nano, 2014, 8(7): 6606 − 6613

    13. [13]

      Ruiz R, Kang H M, Detcheverry F A, Dobisz E, Kercher D S, Albrecht T R, de Pablo J J, Nealey P F. Science, 2008, 321(5891): 936 − 939

    14. [14]

      Liu C C, Ramirez-Hernandez A, Han E, Craig G S W, Tada Y, Yoshida H, Kang H M, Ji S X, Gopalan P, de Pablo J J. Macromolecules, 2013, 46(4): 1415 − 1424

    15. [15]

      Stoykovich M P, Muller M, Kim S O, Solak H H, Edwards E W, de Pablo J J, Nealey P F. Science, 2005, 308(5727): 1442 − 1446

    16. [16]

      Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47(1): 2 − 12

    17. [17]

      Hammond M R, Cochran E, Fredrickson G H, Kramer E J. Macromolecules, 2005, 38(15): 6575 − 6585

    18. [18]

      Mishra V, Fredrickson G H, Kramer E J. ACS Nano, 2012, 6(3): 2629 − 2641

    19. [19]

      Nagpal U, Muller M, Nealey P F, de Pablo J J. ACS Macro Lett, 2012, 1(3): 418 − 422

    20. [20]

      Li W H, Muller M. Macromolecules, 2016, 49(16): 6126 − 6138

    21. [21]

      Li W H, Nealey P F, de Pablo J J, Muller M. Phys Rev Lett, 2014, 113(16): 168301

    22. [22]

      Takahashi H, Laachi N, Delaney K T, Hur S M, Weinheimer C J, Shykind D, Fredrickson G H. Macromolecules, 2012, 45(15): 6253 − 6265

    23. [23]

      Hur S M, Thapar V, Ramirez-Hernandez A, Khaira G, Segal-Peretz T, Rincon-Delgadillo P A, Li W H, Muller M, Nealey P F, de Pablo J J. Proc Natl Acad Sci USA, 2015, 112(46): 14144 − 14149

    24. [24]

      Yokoyama H. Mater Sci Eng R-Rep, 2006, 53(5-6): 199 − 248

    25. [25]

      Lodge T P, Dalvi M C. Phys Rev Lett, 1995, 75(4): 657 − 660

    26. [26]

      Meng D, Wang Q. J Chem Phys, 2007, 126(23): 234902

    27. [27]

      Trombly D M, Pryamitsyn V, Ganesan V. Macromolecules, 2011, 44(24): 9867 − 9881

    28. [28]

      Trombly D M, Pryamitsyn V, Ganesan V. Phys Rev Lett, 2011, 107(14): 148304

    29. [29]

      Song J Q, Liu Y X, Zhang H D. J Chem Phys, 2016, 145(21): 214902

    30. [30]

      Hur S M, Khaira G S, Ramirez-Hernandez A, Muller M, Nealey P F, de Pablo J J. ACS Macro Lett, 2015, 4(1): 11 − 15

    31. [31]

      Kim B H, Park S J, Jin H M, Kim J Y, Son S W, Kim M H, Koo C M, Shin J, Kim J U, Kim S O. Nano Lett, 2015, 15(2): 1190 − 1196

    32. [32]

      Liu Y X, Zhang H D. J Chem Phys, 2014, 140(22): 224101

    33. [33]

      Chantawansri T L, Hur S M, Garcia-Cervera C J, Ceniceros H D, Fredrickson G H. J Chem Phys, 2011, 134(24): 244905

    34. [34]

      E W N, Ren W Q, Vanden-Eijnden E. J Chem Phys, 2007, 126(16): 164103

    35. [35]

      E W N, Ren W Q, Vanden-Eijnden E. Phys Rev B, 2002, 66(5): 052301

    36. [36]

      Tong Q Q, Sibener S J. Macromolecules, 2013, 46(21): 8538 − 8544

    37. [37]

      Kim S O, Kim B H, Kim K, Koo C M, Stoykovich M P, Nealey P F, Solak H H. Macromolecules, 2006, 39(16): 5466 − 5470

    38. [38]

      Kim B, Laachi N, Delaney K T, Carilli M, Kramer E J, Fredrickson G H. J Appl Polym Sci, 2014, 131(24): 40790

    39. [39]

      Man X K, Zhou P, Tang J Z, Yan D D, Andelman D. Macromolecules, 2016, 49(21): 8241 − 8248

    40. [40]

      Man X K, Andelman D. Phys Rev E, 2012, 86(1): 010801

    41. [41]

      Cavicchi K A, Lodge T P. Macromolecules, 2004, 37(16): 6004 − 6012

    42. [42]

      Harrison C, Adamson D H, Cheng Z D, Sebastian J M, Sethuraman S, Huse D A, Register R A, Chaikin P M. Science, 2000, 290(5496): 1558 − 1560

    43. [43]

      Ruiz R, Sandstrom R L, Black C T. Adv Mater, 2007, 19(4): 587 − 591

  • 加载中
    1. [1]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    2. [2]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    3. [3]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    4. [4]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    5. [5]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    6. [6]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    7. [7]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    8. [8]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    9. [9]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    10. [10]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    11. [11]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    12. [12]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    13. [13]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    14. [14]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    15. [15]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    16. [16]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    17. [17]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    20. [20]

      Wen Shi Jiuxing Jiang . 化学中的数学方法课程建设探索. University Chemistry, 2025, 40(6): 48-53. doi: 10.12461/PKU.DXHX202408088

Metrics
  • PDF Downloads(0)
  • Abstract views(156)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return