Citation: Shu-quan Cui, Lin Yu, Jian-dong Ding. Injectable Thermogels Based on Block Copolymers of Appropriate Amphiphilicity[J]. Acta Polymerica Sinica, ;2018, 0(8): 997-1015. doi: 10.11777/j.issn1000-3304.2018.18084 shu

Injectable Thermogels Based on Block Copolymers of Appropriate Amphiphilicity

  • Corresponding author: Jian-dong Ding, jdding1@fudan.edu.cn
  • Received Date: 29 March 2018
    Revised Date: 27 May 2018
    Available Online: 10 July 2018

  • Some amphiphilic copolymers in water can undergo a reversible sol-gel transition upon heating. If the transition temperature lies between room temperature and body temperature, the aqueous system can be readily mixed with drugs or cells at room temperature, and the mixture is injectable; the injected formulation is physically gelled at body temperature, and the gelation is free of any chemical crosslinking. This affords an amazing biomaterial type, yet many questions are open in light of fundamental research and potential clinical applications. In particular, block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and some hydrophobic biodegradable polyesters such as poly(lactide-co-glycolide) (PLGA) are of great clinical potential, yet of very unclear physical crosslinking points. This feature article summarizes the corresponding extensive investigations in the authors’ group led by Ding at Fudan University for a decade. The Ding group has found the significant effects of the end groups of the copolymer, molar mass dispersity ÐM, and other molecular parameters on thermogellability, and revealed the corresponding rules of molecular design, based on their polymer chemistry studies. For instance, with increase in ÐM under either given number average or weight average molecule weight, the sol-gel transition temperature for some block copolymer aqueous systems could shift unidirectionally, which indicates that the effect of molecular weight distribution could not be interpreted simply from addition of the effects of molecular weight or ÐM affords an independent adjustable parameter. The Ding group has shed light on the mechanism of their thermogelling by putting forward the model of percolated micelle network to describe the internal structure of the physical hydrogel, and extended the range of the thermogellable molecular composition of the copolymers to a large extent by establishing a blend strategy, based on their polymer physics studies. The Ding group have also put forward many strategies for the clinical applications of the thermogels using animal models, including prevention of postoperative tissue adhesion, submucosal cushion for endoscopic submucosal dissection, sustained release carriers of antitumor drugs such as camptothecin derivatives, long-acting formulations of polypeptide drugs such as exenatide in treatment of type II diabetes, and tissue engineering of cartilage. The Ding group has also laid a material basis towards potential products of medical devices and drug carriers including the appropriate way of sterilization and improvement of the handling property of the synthesized polymers. The Ding group suggest some perspectives in the end of this feather article.
  • 加载中
    1. [1]

      Hoffman A S. Adv Drug Del Rev, 2002, 54(1): 3-12

    2. [2]

      Buwalda S J, Boere K W M, Dijkstra P J, Feijen J, Vermonden T, Hennink W E. J Control Release, 2014, 190: 254-273

    3. [3]

      Vanparijs N, Nuhn L, De Geest B G. Chem Soc Rev, 2017, 46(4): 1193-1239

    4. [4]

      Du P, Liu J H, Chen G S, Jiang M. Langmuir, 2011, 27(15): 9602-9608

    5. [5]

      Liu J H, Chen G S, Jiang M. Macromolecules, 2011, 44(19): 7682-7691

    6. [6]

      Seliktar D. Science, 2012, 336(6085): 1124-1128

    7. [7]

      Li J Y, Mooney D J. Nat Rev Mater, 2016, 1(12): 16071

    8. [8]

      Ye Bihua(叶碧华), Meng Lu(孟璐), Li Lihua(李立华), Li Na(李娜), Li Zhiwen(李志文), Li Riwang(李日旺), Cai Zhengwei(蔡正伟), Zhou Changren(周长忍). Acta Polymerica Sinica(高分子学报), 2016, (2): 134-148

    9. [9]

      Duan J J, Zhang L N. Chin J Polym Sci, 2017, 35(10): 1165-1180

    10. [10]

      Wang Youzhi(王友志), Gao Jie(高洁), Yang Zhimou(杨志谋). Acta Polymerica Sinica(高分子学报), 2018, (1): 9-20

    11. [11]

      Miyata T, Uragami T, Nakamae K. Adv Drug Del Rev, 2002, 54(1): 79-98

    12. [12]

      Totosaus A, Montejano J G, Salazar J A, Guerrero I. Int J Food Sci Technol, 2002, 37(6): 589-601

    13. [13]

      Qiu Y, Park K. Adv Drug Del Rev, 2012, 64: 49-60

    14. [14]

      Jeong B, Kim S W, Bae Y H. Adv Drug Del Rev, 2002, 54(1): 37-51

    15. [15]

      Yu L, Ding J D. Chem Soc Rev, 2008, 37(8): 1473-1481

    16. [16]

      Moon H J, Ko D Y, Park M H, Joo M K, Jeong B. Chem Soc Rev, 2012, 41(14): 4860-4883

    17. [17]

      Ko D Y, Shinde U P, Yeon B, Jeong B. Prog Polym Sci, 2013, 38(3-4): 672-701

    18. [18]

      Jeong B, Bae Y H, Lee D S, Kim S W. Nature, 1997, 388(6645): 860-862

    19. [19]

      Jeong B, Bae Y H, Kim S W. Macromolecules, 1999, 32(21): 7064-7069

    20. [20]

      Lee D S, Shim M S, Kim S W, Lee H, Park I, Chang T Y. Macromol Rapid Commun, 2001, 22(8): 587-592

    21. [21]

      Joo M K, Sohn Y S, Jeong B. Macromolecules, 2007, 40(14): 5111-5115

    22. [22]

      Basu A, Kunduru K R, Doppalapudi S, Domb A J, Khan W. Adv Drug Del Rev, 2016, 107: 192-205

    23. [23]

      Bae S J, Suh J M, Sohn Y S, Bae Y H, Kim S W, Jeong B. Macromolecules, 2005, 38(12): 5260-5265

    24. [24]

      Yang B, Gong C Y, Zhao X, Zhou S T, Li Z Y, Qi X R, Zhong Q, Luo F, Qian Z Y. Int J Nanomed, 2012, 7: 547-557

    25. [25]

      Jiang Z Q, Deng X M, Hao J Y. J Polym Sci, Part A: Polym Chem, 2007, 45(17): 4091-4099

    26. [26]

      Park S H, Choi B G, Joo M K, Han D K, Sohn Y S, Jeong B. Macromolecules, 2008, 41(17): 6486-6492

    27. [27]

      Yu L, Sheng W J, Yang D C, Ding J D. Macromol Res, 2013, 21(2): 207-215

    28. [28]

      Ruel-Gariepy E, Leroux J C. Eur J Pharm Biopharm, 2004, 58(2): 409-426

    29. [29]

      Zhang H, Ding J D. J Biomat Sci-Polym E, 2010, 21(2): 253-269

    30. [30]

      Jeong B, Lee K M, Gutowska A, An Y H H. Biomacromolecules, 2002, 3(4): 865-868

    31. [31]

      Liu Yuyang(刘郁杨), Fan Xiaodong(范晓东), Zhang Shuangcun(张双存). Acta Polymerica Sinica(高分子学报), 2002, (5): 618-622

    32. [32]

      Zhang Y, Zhu W, Wang B B, Ding J D. J Control Release, 2005, 105(3): 260-268

    33. [33]

      Zhang Y, Zhu W, Ding J D. J Biomed Mater Res A, 2005, 75A(2): 342-349

    34. [34]

      Zhang Y, Zhu W, Wang B B, Yu L, Ding J D. J Pharm Sci, 2005, 94(8): 1676-1684

    35. [35]

      Lu W Q, Ding J D. Macromolecules, 2006, 39(21): 7433-7440

    36. [36]

      Wang B, Zhu W, Zhang Y, Yang Z G, Ding J D. React Funct Polym, 2006, 66(5): 509-518

    37. [37]

      Jeong B, Windisch C F, Park M J, Sohn Y S, Gutowska A, Char K. J Phys Chem B, 2003, 107(37): 10032-10039

    38. [38]

      Bajley F E, Callard R W. J Appl Polym Sci, 1959, 1: 56-62

    39. [39]

      Yu L, Chang G T, Zhang H, Ding J D. J Polym Sci Pol Chem, 2007, 45(6): 1122-1133

    40. [40]

      He C L, Kim S W, Lee D S. J Control Release, 2008, 127(3): 189-207

    41. [41]

      Ma G L, Miao B L, Song C X. J Appl Polym Sci, 2010, 116(4): 1985-1993

    42. [42]

      Liow S S, Dou Q, Kai D, Karim A A, Zhang K, Xu F, Loh X J. ACS Biomater Sci Eng, 2016, 2(3): 295-316

    43. [43]

      Khorshid N K, Zhu K, Knudsen K D, Bekhradnia S, Sande S A, Nystrom B. Macromol Biosci, 2016, 16(12): 1838-1852

    44. [44]

      Yu L, Zhang H, Ding J D. Angew Chem Int Edit, 2006, 45(14): 2232-2235

    45. [45]

      Chang G T, Yu L, Yang Z G, Ding J D. Polymer, 2009, 50(25): 6111-6120

    46. [46]

      Shim M S, Lee H T, Shim W S, Park I, Lee H, Chang T, Kim S W, Lee D S. J Biomed Mater Res, 2002, 61(2): 188-196

    47. [47]

      Chen L, Ci T Y, Li T, Yu L, Ding J D. Macromolecules, 2014, 47(17): 5895-5903

    48. [48]

      Chen L, Ci T Y, Yu L, Ding J D. Macromolecules, 2015, 48(11): 3662-3671

    49. [49]

      Yu L, Zhang Z, Zhang H, Ding J D. Biomacromolecules, 2009, 10(6): 1547-1553

    50. [50]

      Yu L, Zhang Z, Ding J D. Biomacromolecules, 2011, 12(4): 1290-1297

    51. [51]

      Luan J B, Cui S Q, Wang J T, Shen W J, Yu L, Ding J D. Polym Chem, 2017, 8(17): 2586-2597

    52. [52]

      Yu L, Zhang H, Ding J D. Colloid Polym Sci, 2010, 288(10-11): 1151-1159

    53. [53]

      Li T, Ci T Y, Chen L, Yu L, Ding J D. Polym Chem, 2014, 5(3): 979-991

    54. [54]

      Zhang H, Yu L, Ding J D. Macromolecules, 2008, 41(17): 6493-6499

    55. [55]

      Yu L, Xu W, Shen W J, Cao L P, Liu Y, Li Z S, Ding J D. Acta Biomater, 2014, 10(3): 1251-1258

    56. [56]

      Li X Q, Chen L, Lin H, Cao L P, Cheng J A, Dong J, Yu L, Ding J D. Clin Spine Surg, 2017, 30(3): E283-E290

    57. [57]

      Zhang Z, Ni J, Chen L, Yu L, Xu J W, Ding J D. Biomaterials, 2011, 32(21): 4725-4736

    58. [58]

      Yu L, Hu H T, Chen L, Bao X G, Li Y Z, Chen L, Xu G H, Ye X J, Ding J D. Biomater Sci, 2014, 2(8): 1100-1109

    59. [59]

      Yuan B M, He C L, Dong X M, Wang J C, Gao Z L, Wang Q, Tian H Y, Chen X S. RSC Adv, 2015, 5(32): 25295-25303

    60. [60]

      Cao L P, Li Q L, Zhang C, Wu H C, Yao L Q, Xu M D, Yu L, Ding J D. ACS Biomater Sci Eng, 2016, 2(3): 393-402

    61. [61]

      Ci T Y, Chen L, Yu L, Ding J D. Sci Rep, 2014, 4: 5473

    62. [62]

      Shen W J, Chen X B, Luan J B, Wang D N, Yu L, Ding J D. ACS Appl Mater Interfaces, 2017, 9(46): 40031-40046

    63. [63]

      Li K, Yu L, Liu X J, Chen C, Chen Q H, Ding J D. Biomaterials, 2013, 34(11): 2834-2842

    64. [64]

      Chen Y P, Luan J B, Shen W J, Lei K W, Yu L, Ding J D. ACS Appl Mater Interfaces, 2016, 8(45): 30703-30713

    65. [65]

      Zhang L, Shen W J, Luan J B, Yang D X, Wei G, Yu L, Lu W Y, Ding J D. Acta Biomater, 2015, 23: 271-281

    66. [66]

      Liu Y P, Chen X B, Li S Y, Guo Q, Xie J, Yu L, Xu X Y, Ding C M, Li J S, Ding J D. ACS Appl Mater Interfaces, 2017, 9(28): 23428-23440

    67. [67]

      Shang H, Chen X B, Liu Y P, Yu L, Li J S, Ding J D. Int J Pharm, 2017, 527(1-2): 52-60

    68. [68]

      Chen L, Li X Q, Cao L P, Li X L, Meng J R, Dong J, Yu L, Ding J D. Chinese J Polym Sci, 2016, 34(2): 147-163

    69. [69]

      Sun J G, Liu X, Lei Y, Tang M Y, Dai Z X, Yang X W, Yu X B, Yu L, Sun X H, Ding J D. J Mater Chem B, 2017, 5(31): 6400-6411

    70. [70]

      Chen X, Li F, Feng L L, Yu L, Ding J D. J Biomed Nanotechnol, 2017, 13(11): 1357-1368

    71. [71]

      Chang G T, Li C, Lu W Y, Ding J D. Macromol Biosci, 2010, 10(10): 1248-1256

    72. [72]

      Chang G T, Ci T Y, Yu L, Ding J D. J Control Release, 2011, 156(1): 21-27

    73. [73]

      Yu L, Ci T Y, Zhou S C, Zeng W J, Ding J D. Biomater Sci, 2013, 1(4): 411-420

    74. [74]

      Shen W J, Luan J B, Cao L P, Sun J, Yu L, Ding J D. Biomacromolecules, 2015, 16(1): 105-115

    75. [75]

      Luan J B, Shen W J, Chen C, Lei K W, Yu L, Ding J D. RSC Adv, 2015, 5(119): 97975-97981

    76. [76]

      Yu L, Chang G T, Zhang H, Ding J D. Int J Pharm, 2008, 348(1-2): 95-106

    77. [77]

      Ci T Y, Shen Y N, Cui S Q, Liu R L, Yu L, Ding J D. Macromol Biosci, 2017, 17(3): 1600299

    78. [78]

      Liu Y M, Chen X, Ding J M, Yu L, Ma D, Ding J D. ACS Omega, 2017, 2(8): 5283-5288

    79. [79]

      Ci T Y, Li T, Chang G T, Yu L, Ding J D. J Control Release, 2013, 169(3): 329-335

    80. [80]

      Ci T Y, Li T, Chen L, Chang G T, Yu L, Ding J D. Polym Chem, 2013, 4(11): 3245-3255

    81. [81]

      Ci T Y, Chen L, Li T, Chang G T, Yu L, Ding J D. Biomater Sci, 2013, 1(12): 1235-1243

    82. [82]

      Huynh D P, Im G J, Chae S Y, Lee K C, Lee D S. J Control Release, 2009, 137(1): 20-24

    83. [83]

      Liu Zhiling(刘志玲), Zhang Li(张力), Hong Ting(洪挺), Cai Qing(蔡晴), Jin Riguang(金日光). Acta Polymerica Sinica(高分子学报), 2010, (3): 340-346

    84. [84]

      Sun Lilong(孙立泷), Xu Yunhua(许韵华), Zhu Wen(朱雯), Peng Bo(彭勃), Chen Yongming(陈永明), Bai Ru(白茹). Acta Polymerica Sinica(高分子学报), 2015, (6): 673-678

    85. [85]

      Yu L, Li K, Liu X J, Chen C, Bao Y C, Ci T Y, Chen Q H, Ding J D. J Pharm Sci, 2013, 102(11): 4140-4149

    86. [86]

      Chen Y P, Li Y Z, Shen W J, Li K, Yu L, Chen Q H, Ding J D. Sci Rep, 2016, 6: 31593

    87. [87]

      Zhu Wen(朱文), Duan Shifeng(段世锋), Ding Jiandong(丁建东). Journal of Functional Polymers(功能高分子学报), 2004, 17(4): 689-697

    88. [88]

      Wu L B, Zhang H, Zhang J C, Ding J D. Tissue Eng, 2005, 11(7-8): 1105-1114

    89. [89]

      Chen J W, Wang C Y, Lu S H, Wu J Z, Guo X M, Duan C M, Dong L Z, Song Y, Zhang J C, Jing D Y, Wu L B, Ding J D, Li D X. Cell Tissue Res, 2005, 319(3): 429-438

    90. [90]

      Zhang J C, Wu L B, Jing D Y, Ding J D. Polymer, 2005, 46(13): 4979-4985

    91. [91]

      Duan Shifeng(段世锋), Zhu Wen(朱文), Yu Lin(俞麟), Ding Jiandong(丁建东). Chinese Science Bulletin(科学通报), 2005, 50(5): 430-433

    92. [92]

      Wu L B, Jing D Y, Ding J D. Biomaterials, 2006, 27(2): 185-191

    93. [93]

      Pan Z, Ding J D. Interface Focus, 2012, 2(3): 366-377

    94. [94]

      Pan Z, Qu Z H, Zhang Z, Peng R, Yan C, Ding J D. Chinese J Polym Sci, 2013, 31(5): 737-747

    95. [95]

      Wang D X, He Y, Bi L, Qu Z H, Zou J W, Pan Z, Fan J J, Chen L, Dong X, Liu X N, Pei G X, Ding J D. Int J Nanomed, 2013, 8: 1855-1865

    96. [96]

      He Y, Wang X, Chen L, Ding J D. J Mater Chem B, 2014, 2(16): 2220-2227

    97. [97]

      Duan P G, Pan Z, Cao L, He Y, Wang H R, Qu Z H, Dong J, Ding J D. J Biomed Mater Res A, 2014, 102(1): 180-192

    98. [98]

      Zhang Y T, Pan Z, Xia L H, Liu X N, Guo X L, He Y, Zhou J, Qu Z H, Mei G, Jin D, Ding J D. J Biomater Tiss Eng, 2015, 5(10): 757-765

    99. [99]

      Cao L P, Cao B, Lu C J, Wang G W, Yu L, Ding J D. J Mater Chem B, 2015, 3(7): 1268-1280

    100. [100]

      Pan Z, Duan P G, Liu X N, Wang H R, Cao L, He Y, Dong J, Ding J D. Regen Biomater, 2015, 2(1): 9-19

    101. [101]

      Lee K Y, Mooney D J. Chem Rev, 2001, 101(7): 1869-1879

    102. [102]

      Yao X, Peng R, Ding J D. Adv Mater, 2013, 25(37): 5257-5286

    103. [103]

      Sun J G, Graeter S V, Yu L, Duan S F, Spatz J P, Ding J D. Biomacromolecules, 2008, 9(10): 2569-2572

    104. [104]

      Sun J G, Tang J, Ding J D. Chin Sci Bull, 2009, 54(18): 3154-3159

    105. [105]

      Tang J, Peng R, Ding J D. Biomaterials, 2010, 31(9): 2470-2476

    106. [106]

      Yan C, Sun J G, Ding J D. Biomaterials, 2011, 32(16): 3931-3938

    107. [107]

      Peng R, Yao X, Ding J D. Biomaterials, 2011, 32(32): 8048-8057

    108. [108]

      Pan Z, Yan C, Peng R, Zhao Y C, He Y, Ding J D. Biomaterials, 2012, 33(6): 1730-1735

    109. [109]

      Peng R, Yao X, Cao B, Tang J, Ding J D. Biomaterials, 2012, 33(26): 6008-6019

    110. [110]

      Yao X, Peng R, Ding J D. Biomaterials, 2013, 34(4): 930-939

    111. [111]

      Yao X, Hu Y W, Cao B, Peng R, Ding J D. Biomaterials, 2013, 34(36): 9001-9009

    112. [112]

      Cao B, Peng R, Li Z H, Ding J D. Biomaterials, 2014, 35(25): 6871-6881

    113. [113]

      Sun J G, Graeter S V, Tang J, Huang J H, Liu P, Lai Y X, Yu L, Majer G, Spatz J P, Ding J D. Sci China Chem, 2014, 57(4): 645-653

    114. [114]

      Ye K, Wang X, Cao L P, Li S Y, Li Z H, Yu L, Ding J D. Nano Lett, 2015, 15(7): 4720-4729

    115. [115]

      Cao B, Li Z H, Peng R, Ding J D. Biomaterials, 2015, 64: 21-32

    116. [116]

      Liu X N, Liu R L, Cao B, Ye K, Li S Y, Gu Y X, Pan Z, Ding J D. Biomaterials, 2016, 111: 27-39

    117. [117]

      Ye K, Cao L P, Li S Y, Yu L, Ding J D. ACS Appl Mater Interfaces, 2016, 8(34): 21903-21913

    118. [118]

      Cao B, Peng Y M, Liu X N, Ding J D. ACS Appl Mater Interfaces, 2017, 9(28): 23574-23585

    119. [119]

      Liu X N, Liu R L, Gu Y X, Ding J D. ACS Appl Mater Interfaces, 2017, 9(22): 18521-18530

    120. [120]

      Hu Y W, Yao X, Liu Q, Wang Y, Liu R L, Cui S Q, Ding J D. Chin J Chem, 2018, 10.1002/cjoc.2018000124  doi: 10.1002/cjoc.2018000124

    121. [121]

      Ma D W, Zhao Y C, Wu J, Cui T, Ding J D. Soft Matter, 2009, 5(23): 4635-4637

    122. [122]

      Wang Yazhuo(王雅卓), Ma Dewang(马德旺), Zhao Yingchun(赵迎春), Ming Ming(明明), Wu Jia(吴佳), Ding Jiandong(丁建东). Acta Polymerica Sinica(高分子学报), 2012, (7): 698-713

    123. [123]

      Sakai F, Yang G, Weiss M S, Liu Y J, Chen G S, Jiang M. Nat Commun, 2014, 5: 4634

    124. [124]

      Qiu Wenxiu(邱文秀), Cheng Han(程翰), Zhang Xianzheng(张先正), Zhuo Renxi(卓仁禧). Acta Polymerica Sinica(高分子学报), 2018, (1): 32-44

    125. [125]

      Zhang Z, Ni J, Chen L, Yu L, Xu J W, Ding J D. J Biomed Mater Res B, 2012, 100B(6): 1599-1609

    126. [126]

      Huang J H, Grater S V, Corbellinl F, Rinck S, Bock E, Kemkemer R, Kessler H, Ding J D, Spatz J P. Nano Lett, 2009, 9(3): 1111-1116

    127. [127]

      Lai Y X, Xie C, Zhang Z, Lu W Y, Ding J D. Biomaterials, 2010, 31(18): 4809-4817

    128. [128]

      Huang J H, Ding J D. Soft Matter, 2010, 6(15): 3395-3401

    129. [129]

      Wang X, Yan C, Ye K, He Y, Li Z H, Ding J D. Biomaterials, 2013, 34(12): 2865-2874

    130. [130]

      Li S Y, Wang X, Cao B, Ye K, Li Z H, Ding J D. Nano Lett, 2015, 15(11): 7755-7765

    131. [131]

      Wang X, Li S Y, Yan C, Liu P, Ding J D. Nano Lett, 2015, 15(3): 1457-1467

    132. [132]

      Li Z H, Cao B, Wang X, Ye K, Li S Y, Ding J D. J Mater Chem B, 2015, 3(26): 5197-5209

    133. [133]

      Zhang Z, Lai Y X, Yu L, Ding J D. Biomaterials, 2010, 31(31): 7873-7882

    134. [134]

      Chen C, Chen L, Cao L P, Shen W J, Yu L, Ding J D. RSC Adv, 2014, 4(17): 8789-8798

    135. [135]

      Wu L B, Ding J D. Biomaterials, 2004, 25(27): 5821-5830

    136. [136]

      Zhang Ying(张颍), Ding Jiandong(丁建东). Acta Polymerica Sinica(高分子学报), 2005, (6): 919-923

    137. [137]

      Wu L B, Ding J D. J Biomed Mater Res A, 2005, 75A(4): 767-777

    138. [138]

      Zhu W, Ding J D. J Appl Polym Sci, 2006, 99(5): 2375-2383

    139. [139]

      He Yao(何垚), Pan Zhen(潘震), Ding Jiandong(丁建东). Acta Polymerica Sinica(高分子学报), 2013, (6): 755-764

    140. [140]

      Qi Y L, Qi H P, He Y, Lin W J, Li P Z, Qin L, Hu Y W, Chen L P, Liu Q S, Sun H T, Liu Q, Zhang G, Cui S Q, Hu J, Yu L, Zhang D Y, Ding J D. ACS Appl Mater Interfaces, 2018, 10(1): 182-192

    141. [141]

      Ding J D. Sci China Mater, 2018, 10.1007/s40843-018-9228-4  doi: 10.1007/s40843-018-9228-4

    142. [142]

      Zhu Wen(朱文), Zhang Ying(张颍), Wang Biaobing(王标兵), Ding Jiandong(丁建东). Chemical Journal of Chinese Universities(高等学校化学学报), 2005, 2(3): 373-375

    143. [143]

      Zhu W, Wang B B, Zhang Y, Ding J D. Eur Polym J, 2005, 41(9): 2161-2170

    144. [144]

      Yang Z G, Ding J D. Macromol Rapid Commun, 2008, 29(9): 751-756

    145. [145]

      Yu L, Zhang Z, Ding J D. Macromol Res, 2012, 20(3): 234-243

    146. [146]

      Peng Y M, Liu Q J, He T L, Ye K, Yao X, Ding J D. Biomaterials, 2018, Doi: 10.1016/j.biomaterials.2018.04.021

    147. [147]

      Yu L, Zhang Z, Zhang H, Ding J D. Biomacromolecules, 2010, 11(8): 2169-2178

    148. [148]

      Lei K W, Ma Q, Yu L, Ding J D. J Mater Chem B, 2016, 4(48): 7793-7812

    149. [149]

      Qi Yongli(齐永丽), Lei Kewen(雷科文), Yu Lin(俞麟), Ding Jiandong(丁建东). Polymer Bulletin(高分子通报), 2016, (5): 43-51

    150. [150]

      Zhou Y Y, Zhuang Y P, Li X, Agren H, Yu L, Ding J D, Zhu L L. Chem-Eur J, 2017, 23(32): 7642-7647

    151. [151]

      Lei K W, Shen W J, Cao L P, Yu L, Ding J D. Chem Commun, 2015, 51(28): 6080-6083

    152. [152]

      Ma Q, Lei K W, Ding J, Yu L, Ding J D. Polym Chem, 2017, 8(43): 6665-6674

    153. [153]

      Lei K W, Chen Y P, Wang J Y, Peng X C, Yu L, Ding J D. Acta Biomater, 2017, 55: 396-409

  • 加载中
    1. [1]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    2. [2]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    3. [3]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    4. [4]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    5. [5]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    10. [10]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    11. [11]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    12. [12]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    15. [15]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(0)
  • Abstract views(274)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return