Citation: Xiao-na Liu, Liang Gao, Li-quan Wang, Cheng-yan Zhang, Jia-ping Lin. Polymerization-like Assembly Behavior of the Nanorods[J]. Acta Polymerica Sinica, ;2018, 0(10): 1279-1286. doi: 10.11777/j.issn1000-3304.2018.18082 shu

Polymerization-like Assembly Behavior of the Nanorods

  • Step-wise self-assembly is a promising strategy to construct assemblies with higher-level hierarchy and complexity. In this self-assembly, the primary assemblies can self-assemble into one-dimensional structures in a way similar to the synthesis of polymers. However, the questions such as whether the principle of polymerization can apply to the one-dimensional growth of the assemblies still need to be clarified. To address this question, Brownian dynamics simulation was used to investigate the self-assembly of the nanorods with two ends capped with hydrophobic polymers such as polystyrenes. In the Brownian dynamics simulation, the amphiphility was simulated by choosing different cutt-off distances of the Lennard-Jones potentials for the nanorods and polymers. It was found that the nanorods associated with each other into chain-like structures via end-to-end connection, due to the hydrophobility of the polymers. The effects of the solvent selectivity, the length of the nanorods, and the concentration of the nanorods on the self-assembly were examined. The self-assembly of the nanorods into chain-like structures resembles the covalent polymerization of the monomers. The kinetics of the polymerization follows the rule of the step-growth polymerization in most of the cases. As the length of the nanorods or the concentration of the nanorods increases, the degrees of the polymerization show a more rapid increase as a function of time. For the effect of the solvent selectivity, the nanorods are found to be " polymerized” more rapidly as the solubility of the polymers decreases. However, as the solubilty of the polymers is low enough, the " polymerization” behavior is remarkedly less influenced by the solvent selectivity. Note that the rule of the step-growth polymerization cannot apply to the one-dimensional self-assembly of the nanorods when the concentration of the nanorods or the solubility of the polymer is higher. In addition, we found that the nanorods can self-assemble into ring-like structures with various numbers of nanorods via designing nanorods with adjustable chamfers at two ends. The observations are well consistent with some available experimental findings regarding the self-assembly of gold nanorods coated with a bilayer of cetyl trimethyl ammonium bromide along its sides and thiol-terminated polystyrene at two ends. The work can help to understand the dynamics of the self-assembly and designing one-dimensional ordered microstructures in future.
  • 加载中
    1. [1]

      Whitesides G M, Grzybowski B. Science, 2002, 295(5564): 2418 − 2421

    2. [2]

      Li Q, Wang L, Lin J. Phys Chem Chem Phys, 2017, 19(35): 24135 − 24145

    3. [3]

      Cai C, Lin J, Lu J, Zhang Q, Wang L. Chem Soc Rev, 2016, 45(21): 5985 − 6012

    4. [4]

      Lu Yingqing(陆映晴), Tian Xiaohui(田晓慧). Acta Polymerica Sinica(高分子学报), 2017, (3): 471 − 478

    5. [5]

      Xu Jiangfei

    6. [6]

      Long Meilin

    7. [7]

      Polymerica Sinica(高分子学报), 2017, (2): 294 − 305

    8. [8]

      Gröschel A H, Müller A H E. Nanoscale, 2015, 7(28): 11841 − 11876

    9. [9]

      Hill L J, Pinna N, Char K, Pyun J. Prog Polym Sci, 2015, 40: 85 − 120

    10. [10]

      Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E. Science, 2010, 329(5988): 197 − 200

    11. [11]

      Liu K, Lukach A, Sugikawa K, Chung S, Vickery J, Therien-Aubin H, Yang B, Rubinstein M, Kumacheva E. Angew Chem Int Ed, 2014, 53(10): 2648 − 2653

    12. [12]

      Li Z, Zhu Y, Lu Z, Sun, Z. Soft Matter, 2016, 12(3): 741 − 749

    13. [13]

      Zou Q, Li Z, Lu Z, Sun, Z. Nanoscale, 2016, 8(7): 4070 − 4076

    14. [14]

      Gröschel A H, Schacher F H, Schmalz H, Borisov O V, Zhulina E B, Walthe, A, Müller A H E. Nat Commun, 2012, 3: 710

    15. [15]

      Gröschel A H, Walther A, Löbling T I, Schacher F H, Schmalz H, Müller A H E. Nature, 2013, 503: 247 − 251

    16. [16]

      Wang X, Guerin G, Wang H, Wan Y, Manners I, Winnik M A. Science, 2007, 317(5838): 644 − 647

    17. [17]

      Gädt T, Ieong N S, Cambridge G, Winnik M A, Manners I. Nat Mater, 2009, 8: 144 − 150

    18. [18]

      Qiu H, Hudson Z M, Winnik M A, Manners I. Science, 2015, 347(6228): 1329 − 1332

    19. [19]

      Zhuang Z, Jiang T, Lin J, Gao L, Yang C, Wang L, Cai C. Angew Chem Int Ed, 2016, 55(40): 12522 − 12527

    20. [20]

      Yang C, Ma X, Lin J, Wang L, Lu Y, Zhang L, Cai C, Gao L. Macromol Rapid Commun, 2017, 39: 1700701

    21. [21]

      Schneider T, Stoll E. Phys Rev B, 1978, 17: 1302 − 1322

    22. [22]

      Grest G S, Kremer K. Phys Rev A, 1986, 33(5): 3628 − 3631

    23. [23]

      Li Y, Jiang T, Wang L, Lin S, Lin J. Polymer, 2016, 103: 64 − 72

    24. [24]

      Zhang Q, Lin J, Wang L, Xu Z. Prog Polym Sci, 2017, 75: 1 − 30

    25. [25]

    26. [26]

      Flory P J. Principles of Polymer Chemsitry. Ithaca, NY: Cornell Univ Press, 1953. 30-145

  • 加载中
    1. [1]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    2. [2]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    3. [3]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    4. [4]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(0)
  • Abstract views(98)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return