Citation: Lun-jun Qu, Li-shuang Tang, Si-wei Liu, Zhen-guo Chi, Xu-dong Chen, Yi Zhang, Jia-rui Xu. Preparation and Photoluminescent Properties of Polyimides Containing Triphenylamine Pendant Group[J]. Acta Polymerica Sinica, ;2018, 0(11): 1430-1441. doi: 10.11777/j.issn1000-3304.2018.18075 shu

Preparation and Photoluminescent Properties of Polyimides Containing Triphenylamine Pendant Group

  • Corresponding author: Yi Zhang, ceszy@mail.sysu.edu.cn
  • Received Date: 7 March 2018
    Available Online: 1 August 2018

  • Two triphenylamines (TPA) based diamine monomers, TPCDA and TPNDA, were successfully designed and synthesized, which were of similar chemical structures but different electronic effects. Both TPCDA and TPNDA exhibit aggregation induced emission (AIE) phenomenon, and show intense emission at 395 and 447 nm in the solid state, respectively. They were polymerized with two dianhydrides (BPADA and HQDPA), respectively, to form four novel polyimides with excellent thermal stability. The fluorescence of the polyimides derived from TPNDA, TPNBPI and TPNHPI, is totally quenched. However, for the TPCDA-based polyimides, TPCBPI and TPCHPI show bright orange photoluminescence at 565 and 585 nm in their films, respectively. By increasing the concentration of TPCBPI and TPNBPI in N-methyl pyrrolidone (NMP) solution, their emission changes from non-luminescence to bright blue emission, followed by a red-shift due to the formation of strong intermolecular charge transfer, and they show green emission at 504 nm and 508 nm at the concentration of 4 mg·mL−1. The photoluminescence of TPCDA-based polyimides is similar to the composite system, where TPA is doped in a polyimide with the same main-chain structure. However, the theoretical calculations for the model units of the resulting polyimides show that both the conjugated TPNDA-based system and the unconjugated TPCDA-based system are non-luminescent due to an inhibited transition from HOMO to LUMO level. Further studies show that the luminescent properties of the TPCDA-based polyimides are owing to the following two reasons: (1) Compared with the TPNDA-based system, the sp3 hybridized carbon atom in the TPCDA-based system separates the TPA structure from the polyimide main chain, which dispels the influence of the intramolecular charge transfer effect of the polyimide on TPA; (2) The relatively independent TPA moieties can have strong intermolecular charge transfer interaction with the polyimide main chains, which leads this system to exhibiting a strong orange fluorescence with a 184 nm red-shift of the max emission wavelength. This work demonstrates a simple strategy to develop aromatic polyimides with high fluorescence for potential applications in organic photoelectric field.
  • 加载中
    1. [1]

      Kuik M, Wetzelaer G J A H, Nicolai H T, Craciun N I, de Leeuw D M, Blom P W M. Adv Mater, 2014, 26(4): 512 − 531

    2. [2]

      Guan X, Zhang K, Huang F, Bazan G C, Cao Y. Adv Funct Mater, 2012, 22(13): 2846 − 2854

    3. [3]

      Ellmer K. Nat Photon, 2012, 6(12): 808 − 816

    4. [4]

      Kim F S, Ren G Q, Jenekhe S A. Chem Mater, 2011, 23(3): 682 − 732

    5. [5]

      Yu L, Liu J, Hu S J, He R F, Yang W, Wu H B, Peng J B, Xia R D, Bradley D D C. Adv Funct Mater, 2013, 23(35): 4366 − 4376

    6. [6]

      Mazzio K A, Luscombe C K. Chem Soc Rev, 2015, 44(1): 78 − 90

    7. [7]

      Gao X K, Hu Y B. J Mater Chem C, 2014, 2(17): 3099 − 3117

    8. [8]

      Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Prog Polym Sci, 2012, 37(7): 907 − 974

    9. [9]

      Feng L H, Chen Z B. Polymer, 2005, 46(11): 3952 − 3956

    10. [10]

      Mal'tsev E I, Brusentseva M A, Lypenko D A, Berendyaev V I, Kolesnikov V A, Kotov B V, Vannikov A V. Polym Adv Technol, 2000, 11(7): 325 − 329

    11. [11]

      Ng W Y, Gong X, Chan W K. Chem Mater, 1999, 11(4): 1165 − 1170

    12. [12]

      Hsu S C, Whang W T, Chao C S. Thin Solid Films, 2007, 515(17): 6943 − 6948

    13. [13]

      Yang Tingting(杨婷婷), Zhou Zhuxin(周竹欣), Zhang Yi(张艺), Liu Siwei(刘四委), Chi Zhenguo(池振国), Xu Jiarui(许家瑞). Acta Polymprica Sinica(高分子学报), 2017, (3): 411-428

    14. [14]

      Yen H J, Chen C J, Liou G S. Adv Funct Mater, 2013, 23(42): 5307 − 5316

    15. [15]

      Kanosue K, Shimosaka T, Wakita J, Ando S. Macromolecules, 2015, 48(6): 1777 − 1785

    16. [16]

      Thelakkat M, Posch P, Schmidt H W. Macromolecules, 2001, 34(21): 7441 − 7447

    17. [17]

      Wu J H, Liou G S. Polym Chem, 2015, 6(29): 5225 − 5232

    18. [18]

      Yen H J, Chen C J, Liou G S. Chem Commun, 2013, 49(6): 630 − 632

    19. [19]

      Zhou Z X, Zhang Y, Liu S W, Chi Z G, Chen X D, Xu J R. J Mater Chem C, 2016, 4(44): 10509 − 10517

    20. [20]

      Zhou Z X, Huang W X, Long Y B, Chen Y Q, Yu Q X, Zhang Y, Liu S W, Chi Z G, Chen X D, Xu J R. J Mater Chem C, 2017, 5(33): 8545 − 8552

    21. [21]

      Qu L J, Huang S D, Zhang Y, Chi Z G, Liu S W, Chen X D, Xu J R. J Mater Chem C, 2017, 5(26): 6457 − 6466

    22. [22]

      Qu L J, Tang L S, Bei R X, Zhao J, Chi Z G, Liu S W, Chen X D, Aldred M P, Zhang Y, Xu J R. ACS Appl Mater Interfaces, 2018, 10(14): 11430 − 11435

    23. [23]

      Eastmond G C, Paprotny J, Pethrick R A, Santamaria-Mendia F. Macromolecules, 2006, 39(22): 7534 − 7548

    24. [24]

      Cheng S H, Hsiao S H, Su T H, Liou G S. Macromolecules, 2005, 38(2): 307 − 316

    25. [25]

      Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Chem Commun, 2001, 18(18): 1740 − 1741

    26. [26]

      Hong Y N, Lam J W Y, Tang B Z. Chem Commun, 2009, 40(45): 4332 − 4353

    27. [27]

      Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem Rev, 2015, 115(21): 11718 − 11940

    28. [28]

      Liang Z Q, Wang X M, Dai G L, Ye C Q, Zhou Y Y, Tao X T. New J Chem, 2015, 39(11): 8874 − 8880

    29. [29]

      Tian G J, Huang W, Cai S Y, Zhou H T, Li B, Wang Q C, Su J H. RSC Adv, 2014, 4(73): 38939 − 38942

    30. [30]

      Song Q B, Chen K, Sun J W, Wang Y S, Ouyang M, Zhang C. Tetrahedron Lett, 2014, 55(20): 3200 − 3205

    31. [31]

      Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S. Prog Polym Sci, 2012, 37(7): 907 − 974

    32. [32]

      Wakita J, Sekino H, Sakai K, Urano Y, Ando S. J Phys Chem B, 2009, 113(46): 15212 − 15224

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    5. [5]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    6. [6]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    19. [19]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

Metrics
  • PDF Downloads(0)
  • Abstract views(104)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return