Citation: Ruo-yu Cheng, Wen-guo Cui. Hydrogen Bond Mechanically Enhanced Cholecalciferol Lipo-Hydrogel for Bone Regeneration[J]. Acta Polymerica Sinica, ;2018, 0(10): 1315-1327. doi: 10.11777/j.issn1000-3304.2018.18066 shu

Hydrogen Bond Mechanically Enhanced Cholecalciferol Lipo-Hydrogel for Bone Regeneration

  • Corresponding author: Wen-guo Cui, wgcui80@hotmail.com
  • Received Date: 26 February 2018
    Revised Date: 27 March 2018
    Available Online: 6 September 2018

  • Hydrogel is an excellent candidate for drug delivery and tissue regeneration. However, hydrogel used as drug carriers is facing some problems, including limited optional drug and burst drug release. In addition, hydrogel is still confronting some challenges in the area of mechanical property. Cholecalciferol is a type of vitamin able to promote ossification. However, as a lipophilic drug, it should be taken according to the recommended dosage. That means the carriers must be capable of making hydrophobic drug homodispersed with controlling drug release. In this study, we designed a novel hydrogen bond based mechanical reinforced hydrogel, modified by release-controlling cholecalciferol liposome, as an multifunctional scaffold for promoting osteogenesis during the process of bone regeneration. Specifically, drug-loaded liposome was fabricated and the characteristics of the liposomes were investigated. Further, photo-crosslinkable gelatin derivative (GelMA) was combined with drug loaded liposome by micro-cross linking double network, generated by the interaction between hydrogen bond and hydrogel network, leading to double enhancement in mechanical property both for compression and streching. Furthermore, the ability to control release and support uniform distribution of hydrophobic drug (cholecalciferol) was observed in the composite hydrogel, specifically the sustained release of cholecalciferol lasted for three weeks at least without significant brust release. In vitro study also revealed that, this composite hydrogel was proved to have excellent biocompatibility without significant influence on MC3T3-E1 cell adhesion, proliferation, compared with GelMA hydrogel and control groups. After 21 days cultivation, MC3T3-E1 cells cultured with this composite hydrogel exhibited remarkably facilitated osteogenic differentiation, according to the result of ALP stain, ALP analysis and Alizarin red staining. Thus, it is reasonable to believe that this liposome composite hydrogel could provide a promising strategy for extending the application of hydrogel in drug delivery and tissue reconstruction.
  • 加载中
    1. [1]

      Peppas N A, Hilt J Z, Khademhosseini A, Langer R. Adv Mater, 2006, 18(11): 1345 − 1360  doi: 10.1002/(ISSN)1521-4095

    2. [2]

      Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Iran Polym J, 2010, 19(5): 375 − 398

    3. [3]

      Billiet T, Vandenhaute M, Schelfhout J, Van V S, Dubruel P. Biomaterials, 2012, 33(26): 6020 − 6041  doi: 10.1016/j.biomaterials.2012.04.050

    4. [4]

      Vlierberghe SV, Dubruel P, Schacht E. Biomacromolecules, 2011, 12(5): 1387 − 1408  doi: 10.1021/bm200083n

    5. [5]

      Tsai E C, Dalton P D, Shoichet M S, Tator C H. Biomaterials, 2006, 27(3): 519 − 533  doi: 10.1016/j.biomaterials.2005.07.025

    6. [6]

      Patterson J, Siew R, Herring S W, Lin A S P, Guldberg R, Stayton P S. Biomaterials, 2010, 31(26): 6772 − 6781  doi: 10.1016/j.biomaterials.2010.05.047

    7. [7]

      Hori K, Sotozono C, Hamuro J, Yamasaki K, Kimura Y, Ozeki M, Tabata Y, Kinoshita S. J Control Release, 2007, 118(1): 169 − 176

    8. [8]

      Yu Y, Wang Y, Feng C. Chem Res Chinese Univ, 2016, 32(5): 872 − 876  doi: 10.1007/s40242-016-5474-2

    9. [9]

      Andrésguerrero V, Zong M, Ramsay E, Rojas B, Sarkhel S, Gallego B, de H R, Ramírez A I, Salazar J J, Triviño A, Ramírez J M, Del Amo E M, Cameron N, de-Las-Heras B, Urtti A, Mihov G, Dias A, Herrero-Vanrell R. J Control Release, 2015, 10(211): 105 − 107

    10. [10]

      Nguyen V N, Huang N, Grossiord J L, Moine L, Agnely F, Vauthier C. J Appl Polym Sci, 2013, 128(5): 3113 − 3121  doi: 10.1002/app.v128.5

    11. [11]

      Barenholz Y. Curr Opin Colloid Interface Sci, 2001, 6(1): 66 − 77  doi: 10.1016/S1359-0294(00)00090-X

    12. [12]

      Teschke O, Souza E F D. Langmuir, 2002, 18(18): 6513 − 6520

    13. [13]

      Mourtas S, Fotopoulou S, Duraj S, Sfika V, Tsakiroglou C, Antimisiaris S G. Colloid Surface B, 2007, 55(2): 212 − 221  doi: 10.1016/j.colsurfb.2006.12.005

    14. [14]

      Bhardwaj U, Burgess D J. Int J Pharm, 2010, 388(1-2): 181 − 189  doi: 10.1016/j.ijpharm.2010.01.003

    15. [15]

      Cha C, Shin SR, Gao X, Annabi N, Dokmeci M R, Tang X S, Khademhosseini A. Small, 2014, 10(3): 514 − 523  doi: 10.1002/smll.v10.3

    16. [16]

      Zhang Y, Gao Z, Yu Z, Ren X Y, Duan L J, Gao G H. New J Chem, 2017, 41(4): 3281 − 3295

    17. [17]

      Lyu D, Chen S, Guo W. Small, 2018, 14: 39 − 46

    18. [18]

      Yue K, Trujillode S G, Alvarez M M, Tamayol A, Annabi N, Khademhosseini A. Biomaterials, 2015, 73: 254 − 271  doi: 10.1016/j.biomaterials.2015.08.045

    19. [19]

      Chen P, Xia C, Mei S, Wang J, Shan Z, Lin X, Fan S. Biomaterials, 2016, 81: 1 − 13  doi: 10.1016/j.biomaterials.2015.12.006

    20. [20]

      Chen H, Guo L, Wicks J, Ling C, Zhao X, Yan Y, Qi J, Cui W, Deng L. J Mater Chem B, 2016, 4(21): 3770 − 3781  doi: 10.1039/C6TB00065G

    21. [21]

      Wu W, Ni Q, Xiang Y, Dai Y, Jiang S, Wan L, Liu X, Cui W. RSC Adv, 2016, 6(95): 92449 − 92453

    22. [22]

      Li P, Dou X, Feng C, Schoenherr H. Biomater Sci, 2018, 6(4): 785 − 792  doi: 10.1039/C7BM00991G

    23. [23]

      Hurler J, S Åa, Mravljak J, Pajk S, Kristl A, Schubert R, Škalko-Basnet N. Int J Pharm, 2013, 450(1): 296 − 303

    24. [24]

      Cheng H, Yue K, Kazemzadeh-Narbat M, Liu Y, Khalilpour A, Li B, Zhang Y S, Annabi N, Khademhosseini A. ACS Appl Mater Interfaces, 2017, 9(13): 11428  doi: 10.1021/acsami.6b16779

    25. [25]

      Shin H, Olsen B D, Khademhosseini A. Biomaterials, 2012, 33(11): 3143 − 3152  doi: 10.1016/j.biomaterials.2011.12.050

    26. [26]

      Suri A, Rui C, Rackus D G, Spiller N J S, Richardson C, Pålsson L O, Kataky R. Soft Matter, 2011, 7(15): 7071 − 7077  doi: 10.1039/c1sm05530e

    27. [27]

      Xin T, Gu Y, Cheng R, Tang J, Sun Z, Cui W, Chen L. ACS Appl Mater Interfaces, 2017, 9(47): 41168 − 41180  doi: 10.1021/acsami.7b13167

    28. [28]

      Bartnikowski M, Bartnikowski NJ, Woodruff MA, Schrobback K, Klein TJ. Acta Biomater, 2015, 27: 66 − 76  doi: 10.1016/j.actbio.2015.08.038

    29. [29]

      Ye Chen  doi: 10.3724/SP.J.1105.2012.12129

    30. [30]

      Polymerica Sinica(高分子学报), 2012, (7): 778 − 783  doi: 10.3724/SP.J.1105.2012.12013

    31. [31]

      Rahaman M N, Day D E, Bal B S, Fu Q, Jung S B, Bonewald LF, Tomsia A P. Acta Biomater, 2011, 7(6): 2355 − 2373  doi: 10.1016/j.actbio.2011.03.016

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    10. [10]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    11. [11]

      Zhongyun Wu Li Wang Xiaokui Wang Wanchun Zhu Yuan Chun Fuping Tian Yongmei Liu Yunshan Bai Hong Yuan Yufeng Li Shu'e Song Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Pressure. University Chemistry, 2025, 40(5): 137-147. doi: 10.12461/PKU.DXHX202503027

    12. [12]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    13. [13]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    14. [14]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    15. [15]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    19. [19]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    20. [20]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

Metrics
  • PDF Downloads(0)
  • Abstract views(105)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return