Citation: Rui-ying Zhao, Xu-qiang Jiang, Jun-feng Zheng, Xiao-qing Liu, Yan-shuang Xu, Shuang Yang, Er-qiang Chen. Columnar Phase of Side-chain Liquid Crystalline Polymers Based on “Multi-chain Column”[J]. Acta Polymerica Sinica, ;2018, 0(8): 973-986. doi: 10.11777/j.issn1000-3304.2018.18065 shu

Columnar Phase of Side-chain Liquid Crystalline Polymers Based on “Multi-chain Column”

  • Corresponding author: Er-qiang Chen, eqchen@pku.edu.cn
  • Received Date: 23 February 2018
    Revised Date: 26 March 2018

  • Side-chain liquid crystalline polymer (SCLCP) can form columnar liquid crystalline (LC) phases, in addition to the conventional nematic and smectic phase. For the SCLCP containing the discotic mesogenic group attached to the main-chain through a flexible spacer, the columnar phase relies on the assembly of the discotic mesogens. On the other hand, the SCLCP with extended conformation, such as mesogen-jacketed LC polymers and dendronized polymers, can exhibit the columnar phase based on the parallel packing of the cylindrical chains. In this case, " single chain column” is considered to be the building block of the columnar phase in general. Recently, our work on hemiphasmid SCLCP demonstrates that the " multi-chain column” is also important for the columnar phases of SCLCP. Hemiphasmid SCLCP possesses the hemiphasmid side-chain composed of a rod-like mesogen linked with a half-disk end group. It can readily self-organize into columnar phases with a pretty lager lattice parameter (e.g., 5 – 10 nm). It is found that the number of repeating units (Zrep) packed in a column stratum with a thickness of ~ 0.4 nm is surprisingly large. As an example, for the hexagonal columnar phase with the a parameter of ~ 6 nm, the value of Zrep is ~ 10. Squeezing a chain segment with 10 repeating units into the 0.4 nm-thick column stratum is physically unreasonable. The " unusual Zrep” indicates the existence of " multi-chain column” that consists of a bundle of chains (e.g., 4 – 5 chains) laterally associated together. We synthesized a series of hemiphasmid SCLCPs with different chemical structures. Various main-chains have been employed, including polystyrene, poly(methacrylate), polyacetylene, and polynorbornene. The hemiphasmid moieties can invoke different rod-like mesogens, and can be attached to the main-chain directly or via a flexible spacer. For all the samples obtained, we have verified that the " multi-chain column” is applicable. The formation of " multi-chain column” can be understood from the nano-segregation among the main-chain, the rod-like mesogen and the flexible tails. Theoretical analysis indicates that the " multi-chain column” is a structure of thermodynamic equilibrium. The number of chains in the column is dependent on the volume fraction of the rigid component of the SCLCP. We propose that the chains in the column can interlock and intertwine, resulting in the intra-column entanglement. This hypothesis is supported by the study of hemiphasmid side-chain polynorbornene, which illustrates that the intra-column entanglement can endow the polymer with properties of thermoplastic elastomer. Moreover, the polymer can further exhibit excellent multi-shape memory effect at high strain. We anticipate that the further study of the " multi-chain column”, which has been overlooked for years, will deepen our understanding of some fundamental issues of the structure and dynamics of polymers, and will also help to explore the new properties and applications of SCLCPs.
  • 加载中
    1. [1]

    2. [2]

      Donald A, Windle A, Hanna S. Liquid Crystalline Polymers, Cambridge: Cambridge University Press, 2006. 1-356

    3. [3]

      Thünemann A F, Kubowicz S, Burger C, Watson M D, Tchebotareva N, Müllen K. J Am Chem Soc, 2003, 125: 352–356

    4. [4]

      Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M. Angew Chem Int Ed, 2007, 46: 4832–4887

    5. [5]

      Mu B, Wu B, Pan S, Fang J, Chen D. Macromolecules, 2015, 48: 2388–2398

    6. [6]

    7. [7]

      Finkelmann H, Ringsdorf H, Wendorff J H. Makromol Chem, 1978, 179: 273–276

    8. [8]

      Finkelmann H, Ringsdorf H, Siol W, Wendorff J H. Makromol Chem, 1978, 179: 829–832

    9. [9]

      Finkelmann H, Happ M, Portugal M, Ringsdorf H. Makromol Chem, 1978, 179: 2541–2544

    10. [10]

      Davidson P. Prog Polym Sci, 1996,21: 893–950

    11. [11]

      Ungar G. Polymer, 1993, 34: 2050–2059

    12. [12]

      Zhou Q F, Li H M, Feng X D. Macromolecules, 1987, 20: 233–234

    13. [13]

    14. [14]

      Chen X F, Shen Z H, Wan X H, Fan X H, Chen E Q, Ma Y G, Zhou Q F. Chem Soc Rev, 2010, 39: 3072–3101

    15. [15]

    16. [16]

      Yin X Y, Ye C, Ma X, Chen E Q, Qi X Y, Duan X F, Wan X H, Cheng S Z D, Zhou Q F. J Am Chem Soc, 2003, 125: 6854–6855

    17. [17]

      Ye C, Zhang H, Huang Y, Chen E Q, Lu Y, Shen D, Wan X H, Shen Z H, Cheng S Z D, Zhou Q F. Macromolecules, 2004, 37: 7188–7196

    18. [18]

      Tu H L, Wan X H, Liu Y X, Chen X F, Zhang D, Zhou Q F, Shen Z H, Ge J J, Jin S, Cheng S Z D. Macromolecules, 2000, 33: 6315–6320

    19. [19]

    20. [20]

      Rudick J G, Percec V. Acc Chem Res, 2008, 41: 1641–1652

    21. [21]

      Percec V, Ahn C H, Cho W D, Jamieson A M, Kim J, Leman T, Schmidt M, Gerle M, Möller M, Prokhorova S A, Sheiko S S, Cheng S Z D, Zhang A, Ungar G, Yeardley D J P. J Am Chem Soc, 1998, 120: 8619–8631

    22. [22]

      Percec V, Imam M R, Peterca M, Leowanawat P. J Am Chem Soc, 2012, 134: 4408–4420

    23. [23]

      Rosen B M, Wilson D A, Wilson C J, Peterca M, Won B C, Huang C, Lipski L R, Zeng X, Ungar G, Heiney P A, Percec V. J Am Chem Soc, 2009, 131: 17500–17521

    24. [24]

      Zheng J F, Liu X, Chen X F, Ren X K, Yang S, Chen E Q. ACS Macro Lett, 2012, 1: 641–645

    25. [25]

      Liu X Q, Wang J, Yang S, Chen E Q. ACS Macro Lett, 2014, 3: 834–838

    26. [26]

      Xu Y S, Shi D, Gu J, Lei Z, Xie H L, Zhao T P, Yang S, Chen E Q. Polym Chem, 2016, 7: 462–473

    27. [27]

      Zhao R Y, Zhao T P, Jiang X Q, Liu X, Shi D, Liu C Y, Yang S, Chen E Q. Adv Mater, 2017, 29: 1605908

    28. [28]

      Nguyen H T, Destrade C, Malthécte J. Adv Mater, 1997, 9: 375–388

    29. [29]

      Levelut A M, Malthěte J, Destrade C, Tinh N H. Liq Cryst, 1987, 2: 877–888

    30. [30]

      Gharbia M, Gharbi A, Nguyen H T, Malthête J. Curr Opin Colloid Interface Sci, 2002, 7: 312–325

    31. [31]

      Hoag B P, Gin D L. Adv Mater, 1998, 10: 1546–1551

    32. [32]

      Rosen B M, Wilson C J, Wilson D A, Peterca M, Imam M R, Percec V. Chem Rev, 2009, 109: 6275–6540

    33. [33]

      Lin C, Ringsdorf H, Ebert M, Kleppinger R, Wendorff J H. Liq Cryst, 1989, 5: 1841–1847

    34. [34]

      Percec V, Heck J. Polym Bull, 1990, 24: 255–262

    35. [35]

      Percec V, Heck J. Polym Bull, 1991, 25: 55–62

    36. [36]

      Percec V, Heck J. J Polym Sci, Part A: Polym Chem, 1991, 29: 591–597

    37. [37]

      Percec V, Heck J. Polym Bull, 1991, 25: 431–438

    38. [38]

      Percec V, Heck J, Ungar G. Macromolecules, 1991, 24: 4957–4962

    39. [39]

      Percec V, Ahn C H, Ungar G, Yeardley D J P, Moller M, Sheiko S S. Nature, 1998, 391:161–164

    40. [40]

      Wunderlich B. Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, Defects. Academic Press, 1973. 62–85

    41. [41]

      Watanabe J, Ono H, Uematsu I, Abe A. Macromolecules, 1985, 18: 2141–2148

    42. [42]

      Yamagishi T, Fukuda T, Miyamoto T, Takashina Y, Yakoh Y, Watanabe J. Liq Cryst, 1991, 10: 467–473

    43. [43]

      Stepanyan R, Subbotin A, Knaapila M, Ikkala O, Ten Brinke G. Macromolecules, 2003, 36: 3758–3763

    44. [44]

      Fredrickson G H. Macromolecules, 1993, 26: 4351–4355

    45. [45]

      Semenov A N, Sov Phys JETP, 1985, 61: 733–742

    46. [46]

      Percec V, Aqad E, Peterca M, Rudick J G, Lemon L, Ronda J C, de B B, Heiney P A, Meijer E W. J Am Chem Soc, 2006, 128: 16365–16372

    47. [47]

      Wang Y R, Li X J, Pan Y, Zheng Z H, Ding X B, Peng Y X. RSC Adv, 2014, 4: 17156–17160

    48. [48]

      Zhang Y M, Wang Q H, Wang C, Wang T M. J Mater Chem, 2011, 21: 9073–9078

    49. [49]

      Zheng N, Fang G Q, Cao Z L, Zhao Q, Xie T. Polym Chem, 2015, 6: 3046–3053

    50. [50]

      Voit W, Ware T, Dasari R R, Smith P, Danz L, Simon D, Barlow S, Marder S R, Gall K. Adv Funct Mater, 2010, 20: 162–171

    51. [51]

      Xie T, Xiao X C, Cheng Y T. Macromol Rapid Commun, 2009, 30: 1823–1827

    52. [52]

      Barkley D A, Rokhlenko Y, Marine J E, David R, Sahoo D, Watson M D, Koga T, Osuji C O, Rudick J G. J Am Chem Soc, 2017, 139: 15977–15983

    53. [53]

      Andreopoulou K A, Peterca M, Wilson D A, Partridge B E, Heiney P A, Percec V. Macromolecules, 2017, 50: 5271–5284

  • 加载中
    1. [1]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    14. [14]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    18. [18]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    19. [19]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    20. [20]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(195)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return