Citation: Wei-cong Mai, Bin Sun, Ding-cai Wu, Ruo-wen Fu. Fabrication and Structural Control of Hollow Nanonetwork-structured Polystyrene and Carbon Materials[J]. Acta Polymerica Sinica, ;2018, 0(7): 930-938. doi: 10.11777/j.issn1000-3304.2018.18044 shu

Fabrication and Structural Control of Hollow Nanonetwork-structured Polystyrene and Carbon Materials

  • Corresponding author: Ruo-wen Fu, cesfrw@mail.sysu.edu.cn
  • Received Date: 5 February 2018
    Revised Date: 10 April 2018
    Available Online: 15 May 2018

  • As an important class of novel porous materials, nanonetwork-structured polymer and carbon materials have an unique three-dimensional (3D) interconnected hierarchical porous structure, and thus hold considerable promise in a spectrum of applications including energy, adsorption, separation, catalysis, medicine, and so on. This study focuses on the innovative structure design, controllable fabrication and structure-property relationship of novel nanonetwork-structured polystyrene and carbon materials. Hollow nanonetwork-structured polystyrene (HNNS-PS), with hollow microporous PS spherical network unit was designed and fabricated on molecular-level by combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and Friedel-Crafts hypercrosslinking reaction. The 3D nanonetwork structure was controlled by precisely tuning the molecular weight of PS. Gel permeation chromatography (GPC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and nitrogen adsorption were used to characterize the structure and morphology of HNNS-PS, and intelligent gravimetric analyzer (IGA) was used to determine the adsorption capacity of HNNS-PS towards toluene vapor. Additionally, the inheritance of 3D nanonetwork structure during carbonization was realized by tuning the heating rate. It is found that, by utilizing the SI-ATRP technique, one was able to precisely tune the PS molecular weight and to fabricate SiO2-g-PS building blocks with different PS molecular weight, i.e., SiO2-g-PS-22.4k, SiO2-g-PS-46.9k and SiO2-g-PS-94.4k. As the molecular weight of PS went up from 2.26 × 104 to 4.69 × 104 and 9.44 × 104, the diameter of the nanospheres increased from 196 nm to 223 and 282 nm. After the Friedel-Crafts hypercrosslinking reaction and silica etching, HNNS-PS with different PS molecular weight was obtained. Due to the introduction of the micropores, the diameter of the network units increased to 263, 280 and 332 nm, respectively. As the molecular weight of PS went up, the Brunauer-Emmett-Teller surface area (SBET) of HNNS-PS increased from 346 m2 g−1 to 390 and 450 m2 g−1. HNNS-PS had a high adsorption capacity of up to 534 mg g−1 towards toluene vapor at 25 °C. In addition, when the heating rate was low (1 or 2 K min−1) during carbonization, the as-prepared carbon materials could preserve their 3D nanonetwork structure morphologies with SBET up to 696 m2 g−1, which paved the way for the design and fabrication of 3D nanonetwork structured carbon materials, and thus would have important theoretic significance and application value.
  • 加载中
    1. [1]

      Liang Y R, Fu R W, Wu D C. ACS Nano, 2013, 7: 1748-1754

    2. [2]

      Li Z H, Wu D C, Liang Y R, Fu R W, Matyjaszewski K. J Am Chem Soc, 2014, 136: 4805-4808

    3. [3]

      Liang Y R, Wu D C, Fu R W. Sci Rep, 2013, 3: 1119

    4. [4]

      Su D S, Perathoner S, Centi G. Chem Rev, 2013, 113: 5782-5816

    5. [5]

      Wu D C, Li Z H, Zhong M J, Kowalewski T, Matyjaszewski K. Angew Chem Int Ed, 2014, 53: 3957-3960

    6. [6]

      Xu F, Tang Z W, Huang S Q, Chen L Y, Liang Y R, Mai W C, Zhong H, Fu R W, Wu D C. Nat Commun, 2015, 6: 7221

    7. [7]

      Liang Y R, Wu B M, Wu D C. J Mater Chem, 2011, 21: 14424-14427

    8. [8]

      He C X, Liang Y R, Fu R W, Wu D C, Song S Q, Cai R. J Mater Chem, 2011, 21: 16357-16364

    9. [9]

      Deng X, Mammen L, Zhao Y, Lellig P, Mullen K, Li C, Butt H J, Vollmer D. Adv Mater, 2011, 23: 2962-2965

    10. [10]

      Zhao D Y, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548-552

    11. [11]

      Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Nature, 1998, 396: 152-155

    12. [12]

      Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402: 276-279

    13. [13]

      Furukawa H, Yaghi O M. J Am Chem Soc, 2009, 131: 8875-8883

    14. [14]

      Xu F, Xu H, Chen X, Wu D C, Wu Y, Liu H, Gu C, Fu R W, Jiang D L. Angew Chem Int Ed, 2015, 54: 6814-6818

    15. [15]

      Johnson S A, Ollivier P J, Mallouk T E. Science, 1999, 283: 963-965

    16. [16]

      Xu F, Chen X, Tang Z W, Wu D C, Fu R W, Jiang D L. Chem Commum, 2014, 50: 4788-4790

    17. [17]

      Li Z H, Wu D C, Huang X, Ma J H, Liu H, Liang Y R, Fu R W, Matyjaszewski K. Energy Environ Sci, 2014, 7: 3006-3012

    18. [18]

      Ouyang Y, Shi H M, Fu R W, Wu D C. Sci Rep, 2013, 3: 1430

    19. [19]

      Wu D C, Hui C M, Dong H C, Pietrasik J, Ryu H J, Li Z H, Zhong M J, He H K, Kim E K, Jaroniec M, Kowalewski T, Matyjaszewski K. Macromolecules, 2011, 44: 5846-5849

    20. [20]

      Wu D C, Xu F, Sun B, Fu R, He H K, Matyjaszewski K. Chem Rev, 2012, 112: 3959-4015

    21. [21]

      Liu C, Li F, Ma L P, Cheng H M. Adv Mater, 2010, 22: 28-62

    22. [22]

      Su D S, Schlögl R. ChemSusChem, 2010, 3: 136-168

    23. [23]

      Titirici M, Antonietti M. Chem Soc Rev, 2010, 39: 103-116

    24. [24]

      Al-Muhtaseb S, Ritter J. Adv Mater, 2003, 15: 101-114

    25. [25]

      Wu D C, Fu R W, Dresselhaus M, Dresselhaus G. Carbon, 2006, 44: 675-681

    26. [26]

      Davankov V A, Rogoshin S V, Tsyurupa M P. J Polym Sci Polym Symp, 1974, 47: 95-101

    27. [27]

      Zou C, Wu D C, Li M, Zeng Q C, Xu F, Huang Z, Fu R W. J Mater Chem, 2010, 20: 731-735

    28. [28]

      Zeng Q C, Wu D C, Zou C, Xu F, Fu R W, Li Z H, Liang Y R, Su D S. Chem Commun, 2010, 46: 5927-5929

  • 加载中
    1. [1]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    2. [2]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(0)
  • Abstract views(111)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return