Citation: Jing Fang, Wen-bin Zhang. Genetically Encoded Peptide-protein Reactive Pairs[J]. Acta Polymerica Sinica, ;2018, (4): 429-444. doi: 10.11777/j.issn1000-3304.2018.18034 shu

Genetically Encoded Peptide-protein Reactive Pairs

  • Corresponding author: Wen-bin Zhang, wenbin@pku.edu.cn
  • Received Date: 1 February 2018
    Revised Date: 22 February 2018

  • Chemical modification of proteins is of great significance in protein engineering, biomaterials, and chemical biology. Genetically encoded peptide-protein reactive pair, or "molecular superglue", refers to a peptide tag and its protein partner that can spontaneously reconstitute to form an isopeptide or ester bond between the side chains of specific residues of the two components. It is entirely based on natural amino acids and thus genetically encodable, providing a new way to do chemistry with proteins. This feature article summarizes the development of this unique set of chemical tools and elaborates on the principles and mechanisms of the isopeptide formation as well as the application of these tools in diverse fields. To date, a toolbox of peptide-protein reactive pairs has been developed and gradually gained its popularity in various fields such as protein topology engineering, protein-based biomaterials and protein nano-assemblies. Typical pairs include the isopeptide-bond-forming SpyTag/SpyCatcher, SnoopTag/SnoopCatcher, SdyTag/SdyCatcher etc. and the ester-bond-forming Cpe0147-A/Cpe0147-B. It allows the programming of post-translational modification of nascent proteins in vivo, which, in combination with protein folding, leads to versatile nonlinear protein topologies with unique properties, including circular proteins, star proteins, and protein catenanes. The protein catenation is found to enhance both the stability and the activity of the enzyme like dihydrofolate reductase. Their reactivity in vitro is also excellent. The covalent nature of SpyTag/SpyCatcher interaction has facilitated the processing of proteins into various materials forms including all-protein-based, chemically cross-linked hydrogels, functional layer-by-layer thin films, hybrid colloidal assemblies, and "living" materials. In this sense, they can serve as the "iron grip" to bring two parts together to form the conjugate, which may be helpful for diverse purposes such as the sortase activity enhancer. It also allows the preparation of protein nano-assemblies with ultra-high affinity, which are useful for applications like protein nanoreactors, synthetic vaccines, and protein therapeutics. The peptide-protein reactive pair technique thus opens new horizon in protein chemistry and paves the road to the synthesis and application of precision macromolecules with huge potential in real applications.
  • 加载中
    1. [1]

      Ober C K, Cheng S Z D, Hammond P T, Muthukumar M, Reichmains E, Wooley K L, Lodge T P. Macromolecules, 2009, 42:465-471  doi: 10.1021/ma802463z

    2. [2]

      Frontiers in Polymer Science and Engineering, Report of a 2016 NSF Workshop. University of Minnesota, 2017

    3. [3]

      Zhang W, Yu X, Wang C, Sun H, Hsieh I F, Li Y, Dong X, Yue K, van Horn R, Cheng S Z D. Macromolecules, 2014, 47:1221-1239  doi: 10.1021/ma401724p

    4. [4]

      Tezuka Y, Oike H. J Am Chem Soc, 2001, 123:11570-11576  doi: 10.1021/ja0114409

    5. [5]

      Dabrowski Tumanski P, Sulkowska J I. Proc Natl Acad Sci USA, 2017, 114:3415-3420  doi: 10.1073/pnas.1615862114

    6. [6]

      Dabrowski Tumanski P, Sulkowska J. Polymers, 2017, 9:454  doi: 10.3390/polym9090454

    7. [7]

      Xu L, Zhang W. Sci China Chem, 2018, 61:3-16  doi: 10.1007/s11426-017-9155-2

    8. [8]

      Zhang G, Zheng S, Liu H, Chen P R. Chem Soc Rev, 2015, 44:3405-3417  doi: 10.1039/C4CS00393D

    9. [9]

      Lim R K, Lin Q. Chem Commun, 2010, 46:1589-1600  doi: 10.1039/b925931g

    10. [10]

      Schmidt M, Toplak A, Quaedflieg P J, Nuijens T. Curr Opin Chem Biol, 2017, 38:1-7
       

    11. [11]

      Shah N H, Muir T W. Chem Sci, 2014, 5:446-461  doi: 10.1039/C3SC52951G

    12. [12]

      Nguyen G K, Wang S, Qiu Y, Hemu X, Lian Y, Tam J P. Nat Chem Biol, 2014, 10:732-738  doi: 10.1038/nchembio.1586

    13. [13]

      Parthasarathy R, Subramanian S, Boder E T. Bioconjug Chem, 2007, 18:469-476  doi: 10.1021/bc060339w

    14. [14]

      Tsukiji S, Nagamune T. ChemBioChem, 2009, 10:787-798  doi: 10.1002/cbic.v10:5

    15. [15]

      van Valkenburgh H A, Kahn R A. Method Enzymol, 2002, 344:186-193  doi: 10.1016/S0076-6879(02)44715-5

    16. [16]

      Wang L, Brock A, Herberich B, Schultz P G. Science, 2001, 292:498  doi: 10.1126/science.1060077

    17. [17]

      Reddington S C, Howarth M. Curr Opin Chem Biol, 2015, 29:94-99  doi: 10.1016/j.cbpa.2015.10.002

    18. [18]

      Veggiani G, Zakeri B, Howarth M. Trends Biotechnol, 2014, 32:506-512  doi: 10.1016/j.tibtech.2014.08.001

    19. [19]

      Zakeri B. ChemBioChem, 2015, 16:2277-2282  doi: 10.1002/cbic.v16.16

    20. [20]

      Kang H J, Coulibaly F, Clow F, Proft T, Baker E N. Science, 2007, 318:1625-1628  doi: 10.1126/science.1145806

    21. [21]

      Kang H J, Baker E N. Trends Biochem Sci, 2011, 36:229-237  doi: 10.1016/j.tibs.2010.09.007

    22. [22]

      Wikoff W R, Liljas L, Duda R L, Tsuruta H, Hendrix R W, Johnson J E. Science, 2000, 289:2129-2133  doi: 10.1126/science.289.5487.2129

    23. [23]

      Zakeri B, Howarth M. J Am Chem Soc, 2010, 132:4526-4527  doi: 10.1021/ja910795a

    24. [24]

      Zakeri B, Fierer J O, Celik E, Chittock E C, Schwarz Linek U, Moy V T, Howarth M. Proc Natl Acad Sci USA, 2012, 109:E690-E697  doi: 10.1073/pnas.1115485109

    25. [25]

      Zhang W, Sun F, Tirrell D A, Arnold F H. J Am Chem Soc, 2013, 135:13988-13997  doi: 10.1021/ja4076452

    26. [26]

      Veggiani G, Nakamura T, Brenner M D, Gayet R V, Yan J, Robinson C V, Howarth M. Proc Natl Acad Sci USA, 2016, 113:1202-1207  doi: 10.1073/pnas.1519214113

    27. [27]

      Li L, Fierer J O, Rapoport T A, Howarth M. J Mol Biol, 2014, 426:309-317  doi: 10.1016/j.jmb.2013.10.021

    28. [28]

      Hagan R M, Bjornsson R, McMahon S A, Schomburg B, Braithwaite V, Buhl M, Naismith J H, Schwarz Linek U. Angew Chem Int Ed, 2010, 49:8421-8425  doi: 10.1002/anie.201004340

    29. [29]

      Kolb H C, Finn M G, Sharpless K B. Angew Chem Int Ed, 2001, 40:2004-2021  doi: 10.1002/(ISSN)1521-3773

    30. [30]

      Iha R K, Wooley K L, Nystrom A M, Burke D J, Kade M J, Hawker C J. Chem Rev, 2009, 109:5620-5686  doi: 10.1021/cr900138t

    31. [31]

      McKay C S, Finn M G. Chem Biol, 2014, 21:1075-1101  doi: 10.1016/j.chembiol.2014.09.002

    32. [32]

      Sun F, Zhang W. Chin Chem Lett, 2017, 28:2078-2084  doi: 10.1016/j.cclet.2017.08.052

    33. [33]

      Zhang W, Wu X, Yin G, Shao Y, Cheng S Z D. Mater Horiz, 2017, 4:117-132  doi: 10.1039/C6MH00448B

    34. [34]

      Barner Kowollik C, Du Prez F E, Espeel P, Hawker C J, Junkers T, Schlaad H, van Camp W. Angew Chem Int Ed, 2011, 50:60-62  doi: 10.1002/anie.v50.1

    35. [35]

      Li Y, Wang Z, Zheng J, Su H, Lin F, Guo K, Feng X, Wesdemiotis C, Becker M L, Cheng S Z D, Zhang W. ACS Macro Lett, 2013, 2:1026-1032  doi: 10.1021/mz400519c

    36. [36]

      Zimmer M. Chem Rev, 2002, 102:759-781  doi: 10.1021/cr010142r

    37. [37]

      Tan L L, Hoon S S, Wong F T. PLoS ONE, 2016, 11:e0165074  doi: 10.1371/journal.pone.0165074

    38. [38]

      Proschel M, Kraner M E, Horn A H C, Schafer L, Sonnewald U, Sticht H. PLoS ONE, 2017, 12:e0179740  doi: 10.1371/journal.pone.0179740

    39. [39]

      Cao Y, Liu D, Zhang W. Chem Commun, 2017, 53:8830-8833  doi: 10.1039/C7CC04507G

    40. [40]

      Habchi J, Tompa P, Longhi S, Uversky V N. Chem Rev, 2014, 114:6561-6588  doi: 10.1021/cr400514h

    41. [41]

      Liu Y, Liu D, Yang W, Wu X, Lai L, Zhang W. Chem Sci, 2017, 8:6577-6582  doi: 10.1039/C7SC02686B

    42. [42]

      Keeble A H, Banerjee A, Ferla M P, Reddington S C, Anuar I N A K, Howarth M. Angew Chem Int Ed, 2017, 56:16521-16525  doi: 10.1002/anie.201707623

    43. [43]

      Kwon H, Squire C J, Young P G, Baker E N. Proc Natl Acad Sci USA, 2014, 111:1367-1372  doi: 10.1073/pnas.1316855111

    44. [44]

      Young P G, Yosaatmadja Y, Harris P W, Leung I K, Baker E N, Squire C J. Chem Commun, 2017, 53:1502-1505  doi: 10.1039/C6CC09899A

    45. [45]

      Fierer J O, Veggiani G, Howarth M. Proc Natl Acad Sci USA, 2014, 111:E1176-1181  doi: 10.1073/pnas.1315776111

    46. [46]

      Siegmund V, Piater B, Zakeri B, Eichhorn T, Fischer F, Deutsch C, Becker S, Toleikis L, Hock B, Betz U A, Kolmar H. Sci Rep, 2016, 6:39291  doi: 10.1038/srep39291

    47. [47]

      Kwon H, Young P G, Squire C J, Baker E N. Sci Rep, 2017, 7:42753  doi: 10.1038/srep42753

    48. [48]

      Frisch H L, Wasserman E. J Am Chem Soc, 1961, 83:3789-3795  doi: 10.1021/ja01479a015

    49. [49]

      Francl M. Nat Chem, 2009, 1:334-335  doi: 10.1038/nchem.302

    50. [50]

      Forgan R S, Sauvage J P, Stoddart J F. Chem Rev, 2011, 111:5434-5464  doi: 10.1021/cr200034u

    51. [51]

      Cascales L, Craik D J. Org Biomol Chem, 2010, 8:5035-5047  doi: 10.1039/c0ob00139b

    52. [52]

      Schoene C, Fierer J O, Bennett S P, Howarth M. Angew Chem Int Ed, 2014, 53:6101-6104  doi: 10.1002/anie.201402519

    53. [53]

      Schoene C, Bennett S P, Howarth M. Sci Rep, 2016, 6:21151  doi: 10.1038/srep21151

    54. [54]

      Wang J, Wang Y, Wang X, Zhang D, Wu S, Zhang G. Biotechnol Biofuels, 2016, 9:79  doi: 10.1186/s13068-016-0490-5

    55. [55]

      Si M, Xu Q, Jiang L, Huang H. PLoS ONE, 2016, 11:e0162318  doi: 10.1371/journal.pone.0162318

    56. [56]

      Wang Y, Lin H, Chen L, Ding S, Lei Z, Liu D, Cao X, Liang H, Jiang Y, Tian Z. Chem Soc Rev, 2014, 43:399-411  doi: 10.1039/C3CS60212E

    57. [57]

      Wang Y, Lin H, Ding S, Liu D, Chen L, Lei Z, Fan F, Tian Z. Sci China Chem, 2012, 42:525-547
       

    58. [58]

      Danon J J, Krüger A, Leigh D A, Lemonnier J F, Stephens A J, Vitorica Yrezabal I J, Woltering S L. Science, 2017, 355:159  doi: 10.1126/science.aal1619

    59. [59]

      Gil Ramirez G, Leigh D A, Stephens A J. Angew Chem Int Ed, 2015, 54:6110-6150  doi: 10.1002/anie.201411619

    60. [60]

      Davison T S, Nie X, Ma W, Lin Y, Kay C, Benchimol S, Arrowsmith C H. J Mol Biol, 2001, 307:605-617  doi: 10.1006/jmbi.2001.4450

    61. [61]

      Yan L Z, Dawson P E. Angew Chem Int Ed, 2001, 40:3625-3627  doi: 10.1002/1521-3773(20011001)40:19<3625::AID-ANIE3625>3.0.CO;2-Q

    62. [62]

      Blankenship J W, Dawson P E. J Mol Biol, 2003, 327:537-548  doi: 10.1016/S0022-2836(03)00115-3

    63. [63]

      Wang X, Zhang W. Angew Chem Int Ed, 2016, 128:3503-3507  doi: 10.1002/ange.201511640

    64. [64]

      Wang X, Zhang W. Angew Chem Int Ed, 2017, 56:13985-13989  doi: 10.1002/anie.201705194

    65. [65]

      Liu D, Wu W, Liu Y, Wu X, Cao Y, Song B, Li X, Zhang W. ACS Cent Sci, 2017, 3:473-481  doi: 10.1021/acscentsci.7b00104

    66. [66]

      Lam S J, O'Brien Simpson N M, Pantarat N, Sulistio A, Wong E H H, Chen Y Y, Lenzo J C, Holden J A, Blencowe A, Reynolds E C, Qiao G G. Nat Microbiol, 2016, 1:16162  doi: 10.1038/nmicrobiol.2016.162

    67. [67]

      Siegel J S. Science, 2004, 304:1256-1258  doi: 10.1126/science.1099216

    68. [68]

      van Hest J C M, Tirrell D A. Chem Commun, 2001, 1897-1904
       

    69. [69]

      Sun F, Zhang W, Mahdavi A, Arnold F H, Tirrell D A. Proc Natl Acad Sci USA, 2014, 111:11269-11274  doi: 10.1073/pnas.1401291111

    70. [70]

      Gao X, Fang J, Xue B, Fu L, Li H. Biomacromolecules, 2016, 17:2812-2819  doi: 10.1021/acs.biomac.6b00566

    71. [71]

      Gao X, Lyu S, Li H. Biomacromolecules, 2017, 18:3726-3732  doi: 10.1021/acs.biomac.7b01369

    72. [72]

      Wang R, Yang Z, Luo J, Hsing I M, Sun F. Proc Natl Acad Sci USA, 2017, 114:5912-5917  doi: 10.1073/pnas.1621350114

    73. [73]

      Zhou X, Chung H K, Lam A J, Lin M Z. Science, 2012, 338:810-814  doi: 10.1126/science.1226854

    74. [74]

      Wu X, Huang W, Wu W, Xue B, Xiang D, Li Y, Qin M, Sun F, Wang W, Zhang W, Cao Y. Nano Res, 2018, DOI:10.1007/s12274-12017-11890-y  doi: 10.1007/s12274-12017-11890-y

    75. [75]

      Lyu S, Fang J, Duan T, Fu L, Liu J, Li H. Chem Commun, 2017, 53:13375-13378  doi: 10.1039/C7CC06991J

    76. [76]

      Kou S, Yang Z, Sun F. ACS Appl Mater Interfaces, 2017, 9:2035-2039  doi: 10.1021/acsami.6b15968

    77. [77]

      Kou S, Yang Z, Luo J, Sun F. Polym Chem, 2017, 8:6158-6164  doi: 10.1039/C7PY01206C

    78. [78]

      Zhang X, Wang X, Da X, Shi Y, Liu C, Sun F, Yang S, Zhang W. Biomacromolecules, 2018, 19:DOI:10.1021/acs.biomac.1028b00190  doi: 10.1021/acs.biomac.1028b00190

    79. [79]

      Obana M, Silverman B R, Tirrell D A. J Am Chem Soc, 2017, 139:14251-14256  doi: 10.1021/jacs.7b07798

    80. [80]

      Chen A Y, Deng Z, Billings A N, Seker U O, Lu M Y, Citorik R J, Zakeri B, Lu T K. Nat Mater, 2014, 13:515-523  doi: 10.1038/nmat3912

    81. [81]

      Nguyen P Q, Botyanszki Z, Tay P K, Joshi N S. Nat Commun, 2014, 5:4945  doi: 10.1038/ncomms5945

    82. [82]

      Bai Y, Luo Q, Liu J. Chem Soc Rev, 2016, 45:2756-2767  doi: 10.1039/C6CS00004E

    83. [83]

      Banerjee A, Howarth M. Curr Opin Biotechnol, 2017, 51:16-23
       

    84. [84]

      Bedbrook C N, Kato M, Ravindra Kumar S, Lakshmanan A, Nath R D, Sun F, Sternberg P W, Arnold F H, Gradinaru V. Chem Biol, 2015, 22:1108-1121  doi: 10.1016/j.chembiol.2015.06.020

    85. [85]

      Stranges P B, Palla M, Kalachikov S, Nivala J, Dorwart M, Trans A, Kumar S, Porel M, Chien M, Tao C, Morozova I, Li Z, Shi S, Aberra A, Arnold C, Yang A, Aguirre A, Harada E T, Korenblum D, Pollard J, Bhat A, Gremyachinskiy D, Bibillo A, Chen R, Davis R, Russo J J, Fuller C W, Roever S, Ju J, Church G M. Proc Natl Acad Sci USA, 2016, 113:E6749-E6756  doi: 10.1073/pnas.1608271113

    86. [86]

      Wang H H, Altun B, Nwe K, Tsourkas A. Angew Chem Int Ed, 2017, 56:5349-5352  doi: 10.1002/anie.201701419

    87. [87]

      Alam M K, Gonzalez C, Hill W, Fonge H, Barreto K, Geyer C R. ChemBioChem, 2017, 18:2217-2221  doi: 10.1002/cbic.201700411

    88. [88]

      Giessen T W, Silver P A. ChemBioChem, 2016, 17:1931-1935  doi: 10.1002/cbic.v17.20

    89. [89]

      Alves N J, Turner K B, Daniele M A, Oh E, Medintz I L, Walper S A. ACS Appl Mater Interfaces, 2015, 7:24963-24972  doi: 10.1021/acsami.5b08811

    90. [90]

      Fairhead M, Veggiani G, Lever M, Yan J, Mesner D, Robinson C V, Dushek O, van der Merwe P A, Howarth M. J Am Chem Soc, 2014, 136:12355-12363  doi: 10.1021/ja505584f

    91. [91]

      Liu Z, Zhou H, Wang W, Tan W, Fu Y X, Zhu M. Sci Rep, 2014, 4:7266
       

    92. [92]

      Brune K D, Leneghan D B, Brian I J, Ishizuka A S, Bachmann M F, Draper S J, Biswas S, Howarth M. Sci Rep, 2016, 6:19234  doi: 10.1038/srep19234

    93. [93]

      Thrane S, Janitzek C M, Matondo S, Resende M, Gustavsson T, de Jongh W A, Clemmensen S, Roeffen W, van de Vegte Bolmer M, van Gemert G J, Sauerwein R, Schiller J T, Nielsen M A, Theander T G, Salanti A, Sander A F. J Nanobiotechnol, 2016, 14:30  doi: 10.1186/s12951-016-0181-1

    94. [94]

      Singh S K, Thrane S, Janitzek C M, Nielsen M A, Theander T G, Theisen M, Salanti A, Sander A F. Vaccine, 2017, 35:3726-3732  doi: 10.1016/j.vaccine.2017.05.054

    95. [95]

      Janitzek C M, Matondo S, Thrane S, Nielsen M A, Kavishe R, Mwakalinga S B, Theander T G, Salanti A, Sander A F. Malar J, 2016, 15:545  doi: 10.1186/s12936-016-1574-1

    96. [96]

      Leneghan D B, Miura K, Taylor I J, Li Y, Jin J, Brune K D, Bachmann M F, Howarth M, Long C A, Biswas S. Sci Rep, 2017, 7:3811  doi: 10.1038/s41598-017-03798-3

    97. [97]

      Brune K D, Buldun C M, Li Y, Taylor I J, Brod F, Biswas S, Howarth M. Bioconjug Chem, 2017, 28:1544-1551  doi: 10.1021/acs.bioconjchem.7b00174

    98. [98]

      Yumura K, Akiba H, Nagatoishi S, Kusano Arai O, Iwanari H, Hamakubo T, Tsumoto K. J Biochem, 2017, 162:203-210  doi: 10.1093/jb/mvx023

    99. [99]

      Ham S, Min K A, Yang J W, Shin M C. Arch Pharm Res, 2017, 40:1094-1104  doi: 10.1007/s12272-017-0953-7

    100. [100]

      Kasaraneni N, Chamoun Emanuelli A M, Wright G, Chen Z. mBio, 2017, 8:e01860-e01817
       

    101. [101]

      Ke X, Zhang Y, Zheng F, Liu Y, Zheng Z, Xu Y, Wang H. Chem Commun, 2018, 54:1189-1192  doi: 10.1039/C7CC08880A

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    7. [7]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    10. [10]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    12. [12]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    15. [15]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    16. [16]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    19. [19]

      Yumiao Gao Yixin Chen Jiaxin Wei Junjie Yu Yunxia Wang . Guarding the Kingdom: Skin Allies with Sunscreen for Mutual Protection. University Chemistry, 2024, 39(9): 74-80. doi: 10.12461/PKU.DXHX202404149

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(0)
  • Abstract views(279)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return