Citation: Rong Yang, Hong-mei Li, Jing Jiang, Dong-shan Zhou. Study on Isothermal Crystallization Kinetics of Poly(ethylene oxide) Droplets by Fast Scanning Calorimetry[J]. Acta Polymerica Sinica, ;2018, 0(9): 1228-1235. doi: 10.11777/j.issn1000-3304.2018.18024 shu

Study on Isothermal Crystallization Kinetics of Poly(ethylene oxide) Droplets by Fast Scanning Calorimetry

  • Corresponding author: Jing Jiang, juliejing@163.com Dong-shan Zhou, dzhou@nju.edu.cn
  • Received Date: 21 January 2017
    Revised Date: 13 March 2018
    Available Online: 26 June 2018

  • The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) droplets was studied by fast scanning calorimetry (FSC) at a scanning rate up to 10000 K/s over a wide temperature range from its glass transition temperature to its melting temperature, and compared with that of PEO bulk sample. It was observed that the nucleation in PEO bulk sample during cooling is unavoidable even at a scanning rate of up to 50000 K/s because of numerous heterogeneity and the observation of an obvious cold crystallization peak in the subsequent heating curves. While the critical cooling rate is much slower when the sample was prepared by film dewetting and dispersed to several droplets smaller than 2 μm in diameter, and a fully amorphous sample could be obtained at a scanning rate of 10000 K/s. Isothermal crystallization of PEO bulk and that of droplets were studied in the time range from 10−2 s to 103 s at varied temperatures from 210 K to 310 K. The half crystallization time at each annealing temperature was calculated by fitting the enthalpy-time curve with a modified Avrami equation. It was found that the total crystallization rate of PEO droplets was systematically decreased by one magnitude in the whole temperature region. When the sample was dispersed into droplets of the size of several microns, the number of heterogeneity in each droplet was much less than that in the bulk or even heterogeneity-free in some droplets, with the average crystallization rate slowing down, especially in the low supercooling region, where heterogeneous nucleation is supposed to be dominant. The slowing down of crystallization rate was also observed at higher supercooling near Tg, where the homogeneous nucleation is considered to dominate the crystallization rate. Because of a slower homogeneous nucleation rate of PEO, the droplets sample with less heterogeneity mainly nucleated from homogeneous nucleation with a slower crystallization rate comparing to the unavoidable heterogeneous nucleation in bulk sample. The confinement of the droplet size may hinder the long-range diffusion of PEO chains and restricted the growth dimension under confinement, which could also be a reason for which a decrease in total crystallization rate of PEO droplets sample was observed.
  • 加载中
    1. [1]

    2. [2]

      Toda A, Androsch R, Schick C. Polymer, 2016, 91: 239 − 263

    3. [3]

      Michell R M, Müller A J. Prog Polym Sci, 2016, 5455: 183 − 213

    4. [4]

      Vayer M, Vital A. Eur Polym J, 2017: 132 − 139

    5. [5]

      Ono T. Polymer, 2017, 116: 523 − 533

    6. [6]

      Lee S. Polymer, 2016, 116: 540 − 548

    7. [7]

      Michell R M, Lorenzo A T, Müller A J, Lin M C, Blaszczyk-Lezak I, Martín J, Mijangos C. Macromolecules, 2012, 45: 1517 − 1528

    8. [8]

      Suzuki Y, Duran H, Steinhart M, Butt H J, Floudas G. Soft Matter, 2013, 9: 2621 − 2628

    9. [9]

      Lin M C, Nandan B, Chen H L. Soft Matter, 2012, 8: 7306 − 7322

    10. [10]

      Martín-Fabiani I, García-Gutiérrez M C, Rueda D R, Linares A, Hernández J J, Ezquerra T A, Reynolds M. ACS Appl Mater Interfaces, 2013, 5: 5324 − 5329

    11. [11]

      Michell R M, Blaszczyk-Lezak I, Mijangos C, Müller A J. Macromol Symp, 2014, 337: 109 − 115

    12. [12]

      Sanandaji N, Oka A, Haviland D B, Tholén E A, Hedenqvist M S, Gedde U W. Eur Polym, 2013, 49: 203 − 208

    13. [13]

      Carvalho J L, Dalnoki-Veress S K. Eur Phys J, 2011, 34: 1 − 6

    14. [14]

      Massa M V, Carvalho J L, Dalnoki-Veress K. Eur Phys J, 2003, 12: 111 − 117

    15. [15]

      Zhang G, Lee P C, Jenkins S, Dooley J. Baer E Polymer, 2014, 55: 663 − 672

    16. [16]

      Carr J M, Langhe D S, Ponting M T, Hiltner A, Baer E. J Mater Res, 2012, 27: 1326 − 50

    17. [17]

      Huang C, Jiao L, Zeng J, Zhang J, Yang K, Wang Y. Phys Chem B, 2013, 117: 10665 − 10676

    18. [18]

      Zeng J, Zhu Q, Lu X, He Y, Wang Y. Polym Chem, 2012, 3: 399 − 408

    19. [19]

      Fu J, Wei Y, Xue L, Luan B, Pan C, Li B. Polymer, 2009, 50: 1588 − 1595

    20. [20]

      van Riemsdyk A D. Ann Chim Phys, 1880, 20: 66 − 79

    21. [21]

      Price F P. Nucleation in Polymer Crystallization. New York: Marcel Dekker, 1969. 405-488

    22. [22]

      Vonnegut B. J Colloid Sci, 1948, 3: 563 − 569

    23. [23]

      Turnbull D, Cech R. J Appl Phys, 1950, 21: 804 − 810

    24. [24]

      Pound G M, La Mer V K. J Am Chem Soc, 1952, 74: 2323 − 2332

    25. [25]

      Turnbull D, Cormia R. J Chem Phys, 1952, 20: 411 − 424

    26. [26]

      Turnbull D, Cormia R. J Chem Phys, 1961, 34: 820 − 831

    27. [27]

      Cormia R L, Price F P, Turnbull D. J Chem Phys, 1962, 37: 1333 − 1340

    28. [28]

      Burns J, Turnbull D. J Appl Phys, 1966, 37: 4021 − 4026

    29. [29]

      Koutsky J A, Walton A G, Baer E. J Appl Phys, 1967, 38: 1832 − 1839

    30. [30]

      Gornick F, Ross G, Frolen L. J Polym Sci, Polym Part C Symp, 1967, 18: 79 − 91

    31. [31]

      Su Y, Liu G, Xie B, Fu D, Wang D. Acc Chem Res, 2014, 47: 192 − 201

    32. [32]

      Kailas L, Vasilev C, Audinot J N, Migeon H N, Hobbs J K. Macromolecules, 2007, 40: 7223 − 7230

    33. [33]

      Carvalho J, Dalnoki-Veress K. Eur Phys J E, 2011, 34: 1 − 6

    34. [34]

      Massa M V, Dalnoki-Veress K. Phys Rev Lett, 2004, 92: 1 − 4

    35. [35]

      Massa M V, Lee M, Dalnoki-Veress S K. J Polym Sci, Part B: Polym Phys, 2005, 43: 3438 − 3443

    36. [36]

      Massa M V, Carvalho J, Dalnoki-Veress K. Phys Rev Lett, 2006, 97: 1 − 4

    37. [37]

      Carvalho J, Massa M V, Dalnoki-Veress K. J Polym Sci, Part B: Polym Phys, 2006, 44: 3448 − 3452

    38. [38]

      Carvalho J, Dalnoki-Veress K. Phys Rev Lett, 2010, 105: 1 − 4

    39. [39]

      Adamovsky S A, Minakov A A, Schick C. Thermochim Acta, 2003, 403(1): 55 − 63

    40. [40]

      Adamovsky S, Schick C. Thermochim Acta, 2004, 415(2): 1 − 7

    41. [41]

      de Santis F, Adamovsky S, Titomanlio G, Schick C. Macromolecules, 2006, 39(7): 2562 − 2567

    42. [42]

      de Santis F, Adamovsky S, Titomanlio G, Schick C. Macromolecules, 2007, 40(25): 9026 − 9031

    43. [43]

      Minakov A A, van Herwaarden A W, Wien W, Wurm A, Schick C. Thermochim Acta, 2007, 461(1-2): 96 − 106

    44. [44]

      Minakov A A, Wurm A, Schick C. Eur Phys J E, 2007, 23(1): 43 − 53

    45. [45]

      Zhuravlev E, Schmelzer J W P, Wunderlich B, Schick C. Polymer, 2011, 52(9): 1983 − 1997

    46. [46]

      Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B. Polymer, 2012, 53(2): 277 − 282

    47. [47]

      Massa M V, Carvalho J L, Dalnoki-Veress K. Eur Phys J, 2003, 12: 111 − 117

    48. [48]

      Evgeny Z, Jürn W P, Alexander S. Cryst Growth Des, 2015, 15: 786 − 798

    49. [49]

      Rhoades AM, Williams J L, Androsch R. Thermochim Acta, 2014: 112 − 120

    50. [50]

      Mollova A, Androsch R, Mileva D, Schick C, Benhamida A. Macromolecules, 2013, 46: 828 − 835

    51. [51]

      de Santis F, Adamovsky S, Titomanlio G, Schick C. Macromolecules, 2007, 40: 9026 − 9031

    52. [52]

      Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov A, Di Lorenzo M L, Schick C, Wunderlich B. Polym Sci, 2006, 44: 1364 − 1377

    53. [53]

      Zhuravlev E, Schmelzer J W P, Wunderlich B, Schick C. Polymer, 2011, 52: 1983 − 1997

  • 加载中
    1. [1]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    2. [2]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    3. [3]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    15. [15]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    16. [16]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    17. [17]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    20. [20]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

Metrics
  • PDF Downloads(0)
  • Abstract views(132)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return