Citation: Feng-lei Liu, Shui-xia Chen, Wen-hao Fu. Synthesis and CO2 Adsorption Behavior of Amine-functionalized Porous Polyacrylonitrile Resin[J]. Acta Polymerica Sinica, ;2018, 0(7): 886-892. doi: 10.11777/j.issn1000-3304.2018.17332 shu

Synthesis and CO2 Adsorption Behavior of Amine-functionalized Porous Polyacrylonitrile Resin

  • Corresponding author: Shui-xia Chen, cescsx@mail.sysu.edu.cn
  • Received Date: 18 December 2017
    Revised Date: 6 January 2018
    Available Online: 3 May 2018

  • The objective of this study was to develop a novel solid amine adsorbent using porous polyacrylonitrile resin instead of mesoporous silica as support for CO2 adsorption from flue gas. This solid amine adsorbent was prepared by a suspension polymerization of divinylbenzene (DVB) with acrylonitrile (AN), followed by aminating with tetraethylenepentamine (TEPA). Scanning electronic microscope, nitrogen adsorption-desorption isotherms at 77 K, and thermogravimetry (TG) were employed to characterize the surface structure, porosity, and thermal stability of the solid amine adsorbent. Factors that could determine the CO2 adsorption performance of the solid amine adsorbent, such as amine species, adsorption temperature and moisture, were investigated. The experimental results showed that the maximum adsorption capacity of CO2 (1.87 mmol/g) wasachieved at 25 °C with CO2 concentration of 10 vol%, the flow rate of 30 mL/min and TEPA as the organic amine. The solid amine adsorbent modified with TEPA (PAN-TEPA), a longer chain amine among all amines used, showed superior amine efficiency and CO2 adsorption capacity to the other two amine species with shorter chains. CO2 adsorption capacity decreased obviously as the adsorption temperature increased, because the reaction between CO2 and amine groups was an exothermic reaction. The presence of water could significantly improve CO2 amount adsorbed on the adsorbent by promoting the chemical adsorption of CO2 on PAN-TEPA. A higher equilibrium adsorption capacity (2.97 mmol/g) was achieved in the presence of moisture. Meanwhile, the kinetics study found that Avrami kinetic model was more fitted to accurately describe CO2 adsorption than the Pseudo-first and Pseudo-second order models, indicating that both physical adsorption and chemical adsorption were involved in CO2 adsorption. Moreover, this solid amine adsorbent could be regenerated with nitrogen stream at 75 °C, and it kept stable CO2 adsorption capacity after ten cycles of adsorption-desorption. All these features indicated that the amine-functionalized porous polyacrylonitrile resin has a high potential for CO2 capture and separation from flue gas.
  • 加载中
    1. [1]

      Hanak D P, Anthony E J, Manovic V. Energ Environ Sci, 2015, 8: 2199-2249

    2. [2]

      Almaz S J, Li Y, Carter K, James M T. Nat Energy, 2017, 2: 932-938

    3. [3]

      Zhao C, Guo Y, Li W, Bu C, Wang X, Lu P. Chem Eng J, 2017, 312: 50-58

    4. [4]

      Rochelle, G T. Science, 2009, 325: 1652-1654

    5. [5]

      Li W, Wu J, Lee SS, Fortner JD. ChemEng J, 2017, 313: 1160-1167

    6. [6]

      Yan X, Zhang L, Zhang Y, Yang G, Yan Z. IndEngChem Res, 2011, 50: 3220-3226.

    7. [7]

      Hanauer, D A, Mei Q, Malin B, Zheng K. Nature, 2013, 495: 80-84

    8. [8]

      Datta S J, Khumnoon C, Lee Z H, Moo, W K, Docao S, Nguyen T H, Hwang I C, Moon D, Oleynikov P, Terasaki O, Yoon K B. Science, 2015, 350: 302-306

    9. [9]

      Kishor R, Ghoshal A K. Energy Fuel, 2016, 30: 9635-9644

    10. [10]

      Aliakbar H G, Yang Y, Sayari A. Energy Fuel, 2011, 25: 4206-4210

    11. [11]

      Xu X, Song C, Andrésen J M, Miller B G, Scaroni A W. Micropor Mesopor Mat, 2003, 62: 29-45

    12. [12]

      Wang D, Ma X, Sentorunshalaby C, Song CS. IndEngChem Res, 2012, 51: 3048-3057

    13. [13]

      Martínez F, Sanz R, Orcajo G, Briones D, Yángüez V. ChemEngSci, 2016, 142: 55-61

    14. [14]

      Ceciliaa J A, García E V, Sanchoc C G, Saboya R M A, Azevedo D C S, Castellóna E R. Int I Greenhouse Gas Control, 2016, 52: 344-356

    15. [15]

      Zhao Y, Liu X, Han Y. RSC Adv, 2015, 5: 30310-30330

    16. [16]

      Xian S, Feng X, Chen M, Wu Y, Xia Q, Wang H, Li Z. ChemEng J, 2015, 280: 363-369

    17. [17]

      Qi G, Wang Y, EstevezL, Duan X, Anako N, Park AH A. Energ Environ Sci, 2011, 4, 444-452

    18. [18]

      Han J, Du Z, Zou W, Li H, Zhang C. IndEngChem Res, 2015, 54: 7623-7631

    19. [19]

      Liu F, Huang K, Yoo C J, Okonkwo C, Tao D J, Jones C W, Dai S. ChemEng J, 2017, 314: 466-476

    20. [20]

      Liu F, Chen S, Gao Y, Xie Y. J Porous Mater, 2017, 24: 1335-1342

    21. [21]

      Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G. ACS Appl Mater Inter, 2013, 5: 6937-6945

    22. [22]

      Liu F, Chen S, Gao Y. J Colloid Interface Sci, 2017, 506: 236-244

    23. [23]

      Luo S, Chen S, Chen S Y, Zhuang L, Ma N, Xu T. J Environ Manage, 2016, 16: 142-148

    24. [24]

      Wang D, Ma X, Cigdem S S, Song C. IndEngChem Res, 2012, 51: 3048-3057

    25. [25]

      Wang X, ChenL, Guo Q. ChemEng J, 2014, 260: 573-581

    26. [26]

      Wang X, Guo Q, Kong T. Chem Eng J, 2015, 273: 472-480

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    16. [16]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    17. [17]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    18. [18]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

Metrics
  • PDF Downloads(0)
  • Abstract views(358)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return