Citation: Xin-hua Jia, Rong-jun Qu, Chang-mei Sun, Kai An, Rao Fu, Ying-lei Mu. Preparation and Properties of Multiwalled Carbon Nanotubes Modified by Oligo(para-phenylene terephthanlamide)[J]. Acta Polymerica Sinica, ;2018, 0(7): 878-885. doi: 10.11777/j.issn1000-3304.2018.17327 shu

Preparation and Properties of Multiwalled Carbon Nanotubes Modified by Oligo(para-phenylene terephthanlamide)

  • Carbon nanotubes have excellent mechanical properties. However, their application in polymer composites is limited due to their easy aggregation and inert surface. In order to improve their dispersion and surface performance, multiwalled carbon nanotubes (MWCNTs), chemically modified using oligo(para-phenylene terephthanlamide) and denoted as PPTA-MWCNTs-x, were prepared, and used to investigate the reinforcement of the mechanical properties of poly(vinyl chloride) (PVC) composite films. PPTA-MWCNTs-x was obtained by the reaction of carboxymethyl multiwalled carbon nanotubes (MWCNTs-COOH) with amino-terminal para-phenylene terephthanlamide oligomers (PPTA). A typical procedure is as follows: firstly, a desired amount of MWCNTs-COOH was suspended in N-methyl methyl pyrrolidone (NMP), and the suspension was sonicated to form a homogenous dark-brown solution. In a separated experiment, amino-terminal PPTA oligomer was prepared by reacting PDA with TPC at a ratio of 1.5 to 1 in NMP. The above MWCNTs-COOH dispersion was poured into the PPTA solution just prepared, and the mixture was stirred at desired temperature for a given time in the presence of catalyst of N,N-dicyclohexylcarbodiimde under nitrogen atmosphere. The solid substance obtained was filtered and the product PPTA-MWCNTs-x was obtained. Transmission electron microscopy (TEM), scanning electron microscope (SEM), and Fourier transform infrared spectrometer (FTIR) were used to characterize the structure and the morphology of PPTA-MWCNTs-x. The results of FTIR analysis demonstrated that PPTA oligomers were successfully grafted on the surface of PPTA-MWCNTs-x. The dispersion stability of PPTA-MWCNTs-x in some solvents, such as NMP, dimethyl formamide (DMF), dimethyl sulfoxide (DMSO) and ethanol, was investigated. The results showed that the stability of PPTA-MWCNTs-x in DMF and DMSO was higher than that in NMP and ethanol, and the time, that the dispersion remained stable without phase separation, could reach 216 and 240 h, respectively. PVC was chosen as model polymer to investigate the reinforcement effect of PPTA-MWCNTs-x. PVC composite films were prepared by solvent casting using DMF as solvent. Optical microscope images showed that PPTA-MWCNTs-x was more homogeneously dispersed than MWCNTs-COOH in the composite films. The reinforcement results demonstrated that the maximum Young’s modulus, strength and strain of PPTA-MWCNTs-x/PVC composite films increased by 44.4%, 79.4%, and 203.6%, respectively, in comparison to those values from pure PVC films, while those of MWCNTs-COOH/PVC composite films increased by 29.7%, 41.6%, and 104.2%, respectively. Obviously, the MWCNTs modified by oligo-PPTA can significantly improve the mechanical properties of PVC composite films. Based on the observations, PPTA-MWCNTs-x has great potential to be used as reinforcing polymer filler in the future.
  • 加载中
    1. [1]

      Samareh J A, Siochi E J. Nanotechnology, 2017, 28(37): 372001  doi: 10.1088/1361-6528/aa7c5a

    2. [2]

      Schilde C, Schlömann M, Overbeck A, Linke S, Kwade A. Compos Sci Technol, 2015, 117: 183~190  doi: 10.1016/j.compscitech.2015.06.013

    3. [3]

      Kausar A, Rafique I, Muhammad B. J Macromol Sci, Part D: Rev Polym Process, 2016, 55(11): 1167~1191

    4. [4]

      Salama E I, Abbas A, Esawi A M K. Composites Part A, 2017, 99: 84~93  doi: 10.1016/j.compositesa.2017.04.002

    5. [5]

      Qian D, Dickey E C, Andrews R, Rantell T. Appl Phys Lett, 2000, 76(20): 2868~2870  doi: 10.1063/1.126500

    6. [6]

      Tianxi Liu, Phang I Y, Lu S, S Y C, Zhang W D. Macromolecular, 2004, 37(19): 7214~7222  doi: 10.1021/ma049132t

    7. [7]

      Alexander Star, Liu Y, Grant K, Ridvan L, Stoddart J F, Steuerman D W. Macromolecular, 2016, 36(36): 553~560

    8. [8]

      Gupta V K, Moradi O, Tyagi I, Agarwal S, Sadegh H. Crit Rev Env Sci Technol, 2016, 46(2): 93~118  doi: 10.1080/10643389.2015.1061874

    9. [9]

      Khan M U, Reddy K R, Snguanwongchai T, Haque E, Gomes V G. Colloid Polym Sci, 2016, 294(10): 1599~1610  doi: 10.1007/s00396-016-3922-7

    10. [10]

      Wang N, Pandit S, Ye L, Edwards M, Mokkapati V R S S, Murugesan M, Liu J. Carbon, 2017, 111: 402~410  doi: 10.1016/j.carbon.2016.10.027

    11. [11]

      Yang J Y, Jiang X Y, Jiao F P, Yu J G. Appl Surf Sci, 2018, 436: 198~206  doi: 10.1016/j.apsusc.2017.12.029

    12. [12]

      Pan F, Qu R, Jia X, Sun C, Sun H, An K, Mu Y, Ji C, Yin P, Zhang Y. Appl Surf Sci, 2017, 416: 225~233  doi: 10.1016/j.apsusc.2017.04.163

    13. [13]

      Downing J W, Newell J A. J Appl Polym Sci, 2004, 91(1): 417~424  doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Alwis K G N C, Burgoyne C J. Appl Compos Mater, 2006, 13(4): 249~264  doi: 10.1007/s10443-006-9017-8

    15. [15]

      O′Connor I, Hayden H, O′Connor S, Coleman J N, Gun’Ko Y K. J Mater Chem, 2008, 18(46): 5585~5588  doi: 10.1039/b813143k

    16. [16]

      Fan J C, Wang J L, Shi Z X, Yu S, Yin J. Mater Chem Phys, 2013, 141(2-3): 861~868  doi: 10.1016/j.matchemphys.2013.06.015

    17. [17]

      Sainsbury T, Erickson K, Okawa D, Zonte C S, Fréchet J M J, Zettl A. Chem Mater, 2010, 22(6): 2164~2171  doi: 10.1021/cm902987k

    18. [18]

      Wang Y, Shi Z X, Yin J. Polymer, 2011, 52(16): 3661~3670  doi: 10.1016/j.polymer.2011.06.012

    19. [19]

      Gómez S, Rendtorff N M, Aglietti E F, Sakka Y, Suárez G. Appl Surf Sci, 2016, 379: 264~269  doi: 10.1016/j.apsusc.2016.04.065

  • 加载中
    1. [1]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    7. [7]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    20. [20]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

Metrics
  • PDF Downloads(0)
  • Abstract views(111)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return