Citation: Shao Shi-yang, Ding Jun-qiao, Wang Li-xiang. Research Progress on Electroluminescent Polymers[J]. Acta Polymerica Sinica, ;2018, (2): 198-216. doi: 10.11777/j.issn1000-3304.2018.17289 shu

Research Progress on Electroluminescent Polymers

  • Electroluminescent polymers hold great promise in penal display and solid-state lighting applications because of their advantages of solution processability, large-scale manufacturing and ability to produce flexible devices based on plastic substrates. In the past decades, great progress has been made in electroluminescent polymers including their working mechanism, material systems and device performance. Basically, electroluminescent polymers can be divided into three classes:fluorescent polymers, phosphorescent polymers and thermally activated delayed fluorescence (TADF) polymers. For fluorescent polymers, the internal quantum efficiency (IQE) is limited to 25% because they can use only singlet excitons in the electroluminescent device. In comparison, IQE of phosphorescent polymers can reach 100% because of the strong spin-orbital coupling induced by the heavy-atoms in the phosphorescent dopants. Recently, TADF polymers have evolved rapidly as the new kind of electroluminescent polymers because they are able to utilize triplet excitons through rapid reverse intersystem crossing process from the lowest triplet state to the lowest singlet state, thereby providing a promising approach to reach 100% IQE without the use of noble metal elements. With these developments, the device performance of the polymers has been enhanced greatly and many indexes have met the commercialization requirements. This review is aimed to summarize the research progresses on electroluminescent polymers used for organic light-emitting diodes, including the molecular design and device performance of representative examples of fluorescent polymers, phosphorescent polymers and TADF polymers. The emphasis of this review is especially focused on the color tuning and performance improvement approaches for the fluorescent polymers, the optimization of the phosphorescent dopant, the polymer host and the topological structure of the phosphorescent polymers, as well as the design principles of the thermally activated delayed fluorescence polymers. Finally, the perspectives and the key challenges of the electroluminescent polymers are discussed, and future directions of efforts toward further developing low-cost, efficient, and stable electroluminescent polymers are also demonstrated.
  • 加载中
    1. [1]

      Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347(6293):539-541  doi: 10.1038/347539a0

    2. [2]

      https://www.cdtltd.co.uk/technology-scope/oled-displays-lighting/

    3. [3]

      Zhang B, Tan G, Lam C S, Yao B, Ho C L, Liu L, Xie Z, Wong W Y, Ding J, Wang L. Adv Mater, 2012, 24(14):1873-1877  doi: 10.1002/adma.v24.14

    4. [4]

      Gustafsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J. Nature, 1992, 357(6378):477-479  doi: 10.1038/357477a0

    5. [5]

      Braun D, Heeger A J. Thin Solid Films, 1992, 216(1):96-98  doi: 10.1016/0040-6090(92)90876-D

    6. [6]

      Kraft A, Grimsdale A C, Holmes A B. Angew Chem Int Ed, 1998, 37(4):402-428  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Ohmori Y, Uchida M, Muro K, Yoshino K. Solid State Commun, 1991, 80(8):605-608  doi: 10.1016/0038-1098(91)90161-N

    8. [8]

      Yang Y, Pei Q, Heeger A J. Synth Met, 1996, 78(3):263-267  doi: 10.1016/0379-6779(96)80148-2

    9. [9]

      Yang Y, Pei Q, Heeger A J. J Appl Phys, 1996, 79(2):934-939  doi: 10.1063/1.360875

    10. [10]

      Lu H H, Liu C Y, Chang C H, Chen S A. Adv Mater, 2007, 19(18):2574-2579  doi: 10.1002/(ISSN)1521-4095

    11. [11]

      Setayesh S, Marsitzky D, Müllen K. Macromolecules, 2000, 33(6):2016-2020  doi: 10.1021/ma9914366

    12. [12]

      Scherf U, Müllen K. Macromolecules, 1992, 25(13):3546-3548  doi: 10.1021/ma00039a037

    13. [13]

      Grimsdale A C, Muellen K. Adv Polym Sci, 2008:1-48

    14. [14]

      Wu W S, Inbasekaran M, Hudack M, Welsh D, Yu W L, Cheng Y, Wang C, Kram S, Tacey M, Bernius M, Fletcher R, Kiszka K, Munger S, O'Brien J. Microelectron J, 2004, 35(4):343-348  doi: 10.1016/j.mejo.2003.07.001

    15. [15]

      Xu Q F, Ouyang J Y, Yang Y, Ito T, Kido J. Appl Phys Lett, 2003, 83(23):4695-4697  doi: 10.1063/1.1630848

    16. [16]

      Yang R Q, Tian R Y, Hou Q, Yang W, Cao Y. Macromolecules, 2003, 36(20):7453-7460

    17. [17]

      Yang J, Jiang C Y, Zhang Y, Yang R Q, Yang W, Hou Q, Cao Y. Macromolecules, 2004, 37(4):1211-1218  doi: 10.1021/ma035743u

    18. [18]

      Luo Jie, Yang Renqiang, Yang Wei, Cao Yong. Scientia Sinica Chimica, 2010, 40(2):161-166

    19. [19]

      Zhang L J, Hu S J, Chen J W, Chen Z H, Wu H B, Peng J B, Cao Y. Adv Funct Mater, 2011, 21(19):3760-3769  doi: 10.1002/adfm.201100844

    20. [20]

      Chen L, Tong H, Xie Z, Wang L, Jing X, Wang F. J Mater Chem, 2011, 21(39):15773-15779  doi: 10.1039/c1jm12549d

    21. [21]

      Chen L, Zhang B, Cheng Y, Xie Z, Wang L, Jing X, Wang F. Adv Funct Mater, 2010, 20(18):3143-3153  doi: 10.1002/adfm.201000840

    22. [22]

      Liu J, Cao J, Shao S, Xie Z, Cheng Y, Geng Y, Wang L, Jing X, Wang F. J Mater Chem, 2008, 18(14):1659-1666  doi: 10.1039/b716234k

    23. [23]

      Liu J, Chen L, Shao S, Xie Z, Cheng Y, Geng Y, Wang L, Jing X, Wang F. J Mater Chem, 2008, 18(3):319-327  doi: 10.1039/B712562C

    24. [24]

      Liu J, Chen L, Shao S, Xie Z, Cheng Y, Geng Y, Wang L, Jing X, Wang F. Adv Mater, 2007, 19(23):4224-4228  doi: 10.1002/(ISSN)1521-4095

    25. [25]

      Liu J, Guo X, Bu L, Xie Z, Cheng Y, Geng Y, Wang L, Jing X, Wang F. Adv Funct Mater, 2007, 17(12):1917-1925  doi: 10.1002/(ISSN)1616-3028

    26. [26]

      Liu J, Shao S, Chen L, Xie Z, Cheng Y, Geng Y, Wang L, Jing X, Wang F. Adv Mater, 2007, 19(14):1859-1863  doi: 10.1002/(ISSN)1521-4095

    27. [27]

      Liu J, Xie Z, Cheng Y, Geng Y, Wang L, Jing X, Wang F. Adv Mater, 2007, 19(4):531-535  doi: 10.1002/(ISSN)1521-4095

    28. [28]

      Lee J, Cho H J, Jung B J, Cho N S, Shim H K. Macromolecules, 2004, 37(23):8523-8529  doi: 10.1021/ma0497759

    29. [29]

      Setayesh S, Grimsdale A C, Weil T, Enkelmann V, Müllen K, Meghdadi F, List E J W, Leising G. J Am Chem Soc, 2001, 123(5):946-953

    30. [30]

      Liu H, Zou J, Yang W, Wu H, Li C, Zhang B, Peng J, Cao Y. Chem Mater, 2008, 20(13):4499-4506  doi: 10.1021/cm800129h

    31. [31]

      Yu L, Liu J, Hu S, He R, Yang W, Wu H, Peng J, Xia R, Bradley D D C. Adv Funct Mater, 2013, 23(35):4366-4376  doi: 10.1002/adfm.v23.35

    32. [32]

      Peng F, Li N, Ying L, Zhong W, Guo T, Cui J, Yang W, Cao Y. J Mater Chem C, 2017, 5(37):9680-9686  doi: 10.1039/C7TC02515G

    33. [33]

      Peng F, Xu J, Zhang Y, He R, Yang W, Cao Y. J Polym Sci, Part A:Polym Chem, 2017, 55(14):2332-2341  doi: 10.1002/pola.v55.14

    34. [34]

      Huang C W, Peng K Y, Liu C Y, Jen T H, Yang N J, Chen S A. Adv Mater, 2008, 20(19):3709-3716

    35. [35]

      Lai W Y, Zhu R, Fan Q L, Hou L T, Cao Y, Huang W. Macromolecules, 2006, 39(11):3707-3709  doi: 10.1021/ma060154k

    36. [36]

      Shu C F, Dodda R, Wu F I, Liu M S, Jen A K Y. Macromolecules, 2003, 36(18):6698-6703  doi: 10.1021/ma030123e

    37. [37]

      Wu Y G, Li J, Fu Y Q, Bo Z S. Org Lett, 2004, 6(20):3485-3487  doi: 10.1021/ol048709o

    38. [38]

      Lee J I, Lee H, Oh J, Chu H Y, Kim S H, Yang Y S, Kim G H, Do L M, Zyung T. Curr Appl Phys, 2003, 3(6):469-471

    39. [39]

      Lee J I, Chu H Y, Lee H, Oh J, Do L M, Zyung T, Lee J, Shim H K. Etri J, 2005, 27(2):181-187  doi: 10.4218/etrij.05.0104.0125

    40. [40]

      Karim M A, Cho Y R, Park J S, Yoon K J, Lee S J, Jin S H, Lee G D, Gal Y S. Macromol Res, 2008, 16(4):337-344  doi: 10.1007/BF03218526

    41. [41]

      Muller C D, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K. Nature, 2003, 421(6925):829-833  doi: 10.1038/nature01390

    42. [42]

      Ou C J, Lei Z F, Sun M L, Xie L H, Qian Y, Zhang X W, Huang W. Synth Met, 2015, 200:135-142  doi: 10.1016/j.synthmet.2014.12.034

    43. [43]

      Wang X, Zhao L, Shao S, Ding J, Wang L, Jing X, Wang F. Polym Chem, 2014, 5(22):6444-6451  doi: 10.1039/C4PY00698D

    44. [44]

      Wang X, Zhao L, Shao S, Ding J, Wang L, Jing X, Wang F. Macromolecules, 2014, 47(9):2907-2914  doi: 10.1021/ma500407m

    45. [45]

      Bai K, Wang S, Zhao L, Ding J, Wang L. Polym Chem, 2017, 8(14):2182-2188  doi: 10.1039/C7PY00216E

    46. [46]

      Bai K, Wang S, Zhao L, Ding J, Wang L. Macromolecules, 2017, 50(17):6945-6953  doi: 10.1021/acs.macromol.7b01393

    47. [47]

      Sandee A J, Williams C K, Evans N R, Davies J E, Boothby C E, Kohler A, Friend R H, Holmes A B. J Am Chem Soc, 2004, 126(22):7041-7048  doi: 10.1021/ja039445o

    48. [48]

      Wu F I, Yang X H, Neher D, Dodda R, Tseng Y H, Shu C F. Adv Funct Mater, 2007, 17(7):1085-1092  doi: 10.1002/(ISSN)1616-3028

    49. [49]

      Zhuang W L, Zhang Y, Hou Q, Wang L, Cao Y. J Polym Sci, Part A:Polym Chem, 2006, 44(13):4174-4186

    50. [50]

      Chien C H, Liao S F, Wu C H, Shu C F, Chang S Y, Chi Y, Chou P T, Lai C H. Adv Funct Mater, 2008, 18(9):1430-1439  doi: 10.1002/adfm.v18:9

    51. [51]

      Kimyonok A, Domercq B, Haldi A, Cho J Y, Carlise J R, Wang X Y, Hayden L E, Jones S C, Barlow S, Marder S R, Kippelen B, Weck M. Chem Mater, 2007, 19(23):5602-5608  doi: 10.1021/cm0717357

    52. [52]

      Ma Z H, Ding J Q, Zhang B H, Mei C Y, Cheng Y X, Xie Z Y, Wang L X, Jing X B, Wang F S. Adv Funct Mater, 2010, 20(1):138-146  doi: 10.1002/adfm.v20:1

    53. [53]

      Ma Z, Chen L, Ding J, Wang L, Jing X, Wang F. Adv Mater, 2011, 23(32):3726-3729  doi: 10.1002/adma.v23.32

    54. [54]

      Fei T, Cheng G, Hu D, Dong W, Lu P, Ma Y. J Polym Sci, Part A:Polym Chem, 2010, 48(9):1859-1865  doi: 10.1002/pola.v48:9

    55. [55]

      Xu F, Kim J H, Kim H U, Jang J H, Yook K S, Lee J Y, Hwang D H. Macromolecules, 2014, 47(21):7397-7406  doi: 10.1021/ma5015929

    56. [56]

      Shao S, Ding J, Ye T, Xie Z, Wang L, Jing X, Wang F. Adv Mater, 2011, 23(31):3570-3574  doi: 10.1002/adma.201101074

    57. [57]

      Shao S, Ding J, Wang L, Jing X, Wang F. J Am Chem Soc, 2012, 134(37):15189-15192  doi: 10.1021/ja305634j

    58. [58]

      Shao S, Ding J, Wang L, Jing X, Wang F. J Mater Chem, 2012, 22(47):24848-24855

    59. [59]

      Shao S, Ding J, Wang L, Jing X, Wang F. J Am Chem Soc, 2012, 134(50):20290-20293  doi: 10.1021/ja310158j

    60. [60]

      Liu B, Dang F, Tian Z, Feng Z, Jin D, Dang W, Yang X, Zhou G, Wu Z. ACS Appl Mater Interfaces, 2017, 9(19):16360-16374  doi: 10.1021/acsami.7b04509

    61. [61]

      Guo T, Yu L, Yang Y, Li Y, Tao Y, Hou Q, Ying L, Yang W, Wu H, Cao Y. J Lumin, 2015, 167:179-185  doi: 10.1016/j.jlumin.2015.06.026

    62. [62]

      Liu J, Yu L, Zhong C, He R, Yang W, Wu H, Cao Y. RSC Adv, 2012, 2(2):689-696  doi: 10.1039/C1RA00610J

    63. [63]

      Shao S, Ma Z, Ding J, Wang L, Jing X, Wang F. Adv Mater, 2012, 24(15):2009-2013  doi: 10.1002/adma.201104544

    64. [64]

      Zhu M, Li Y, Cao X, Jiang B, Wu H, Qin J, Cao Y, Yang C. Macromol Rapid Commun, 2014, 35(24):2071-2076  doi: 10.1002/marc.v35.24

    65. [65]

      Ding J Q, Gao J, Cheng Y X, Xie Z Y, Wang L X, Ma D G, Jing X B, Wang F S. Adv Funct Mater, 2006, 16(4):575-581  doi: 10.1002/(ISSN)1616-3028

    66. [66]

      Ding J, Lu J, Cheng Y, Xie Z, Wang L, Jing X, Wang F. Adv Funct Mater, 2008, 18(18):2754-2762  doi: 10.1002/adfm.v18:18

    67. [67]

      Ding J, Wang B, Yue Z, Yao B, Xie Z, Cheng Y, Wang L, Jing X, Wang F. Angew Chem Int Ed, 2009, 48(36):6664-6666  doi: 10.1002/anie.v48:36

    68. [68]

      Xia D, Wang B, Chen B, Wang S, Zhang B, Ding J, Wang L, Jing X, Wang F. Angew Chem Int Ed, 2014, 53(4):1048-1052  doi: 10.1002/anie.201307311

    69. [69]

      Zhou G, Wong W-Y, Yao B, Xie Z, Wang L. Angew Chem Int Ed, 2007, 46(7):1149-1151  doi: 10.1002/(ISSN)1521-3773

    70. [70]

      Zhu M R, Zou J H, He X, Yang C L, Wu H B, Zhong C, Qin J G, Cao Y. Chem Mater, 2012, 24(1):174-180  doi: 10.1021/cm202732j

    71. [71]

      Tang M C, Tsang D P K, Chan M M Y, Wong K M C, Yam V W W. Angew Chem Int Ed, 2013, 52(1):446-449  doi: 10.1002/anie.201206457

    72. [72]

      Tang M C, Chan C K M, Tsang D P K, Wong Y C, Chan M M Y, Wong K M C, Yam V W W. Chem Eur J, 2014, 20(46):15233-15241  doi: 10.1002/chem.201404313

    73. [73]

      Tang M C, Tsang D P K, Wong Y C, Chan M Y, Wong K M C, Yam V W W. J Am Chem Soc, 2014, 136(51):17861-17868  doi: 10.1021/ja510622x

    74. [74]

      Kong F K W, Tang M C, Wong Y C, Chan M Y, Yam V W W. J Am Chem Soc, 2016, 138(19):6281-6291  doi: 10.1021/jacs.6b02632

    75. [75]

      Kong F K W, Tang M C, Wong Y C, Ng M, Chan M Y, Yam V W W. J Am Chem Soc, 2017, 139(18):6351-6362  doi: 10.1021/jacs.7b00479

    76. [76]

      Lee C H, Tang M C, Wong Y C, Chan M Y, Yam V W W. J Am Chem Soc, 2017, 139(30):10539-10550  doi: 10.1021/jacs.7b05872

    77. [77]

      Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428):234-238  doi: 10.1038/nature11687

    78. [78]

      Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Adv Mater, 2013, 25(24):3319-3323  doi: 10.1002/adma.v25.24

    79. [79]

      Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S, Komino T, Oiwa H, Suzuki F, Wakamiya A, Murata Y, Adachi C. Nat Commun, 2015, 6:8476  doi: 10.1038/ncomms9476

    80. [80]

      Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C. Adv Mater, 2016, 28(32):6976-6983  doi: 10.1002/adma.201601675

    81. [81]

      Xie Y, Li Z. J Polym Sci, Part A:Polym Chem, 2017, 55(4):575-584

    82. [82]

      Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M. Adv Mater, 2015, 27(44):7236-7240  doi: 10.1002/adma.201501090

    83. [83]

      Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C. Adv Mater, 2016, 28(21):4019-4024  doi: 10.1002/adma.201505026

    84. [84]

      Albrecht K, Matsuoka K, Fujita K, Yamamoto K. Angew Chem Int Ed, 2015, 54(19):5677-5682  doi: 10.1002/anie.201500203

    85. [85]

      Li Y, Xie G, Gong S, Wu K, Yang C. Chem Sci, 2016, 7(8):5441-5447  doi: 10.1039/C6SC00943C

    86. [86]

      Freeman D M E, Musser A J, Frost J M, Stern H L, Forster A K, Fallon K J, Rapidis A G, Cacialli F, McCulloch I, Clarke T M, Friend R H, Bronstein H. J Am Chem Soc, 2017, 139:11073  doi: 10.1021/jacs.7b03327

    87. [87]

      Luo J, Xie G, Gong S, Chen T, Yang C. Chem Commun, 2016, 52(11):2292-2295  doi: 10.1039/C5CC09797E

    88. [88]

      Xie G, Luo J, Huang M, Chen T, Wu K, Gong S, Yang C. Adv Mater, 2017, 29(11):1604223  doi: 10.1002/adma.201604223

    89. [89]

      Zhu Y, Zhang Y, Yao B, Wang Y, Zhang Z, Zhan H, Zhang B, Xie Z, Wang Y, Cheng Y. Macromolecules, 2016, 49(11):4373-4377  doi: 10.1021/acs.macromol.6b00430

    90. [90]

      Wei Q, Kleine P, Karpov Y, Qiu X, Komber H, Sahre K, Kiriy A, Lygaitis R, Lenk S, Reineke S, Voit B. Adv Funct Mater, 2017, 27(7):1605051  doi: 10.1002/adfm.v27.7

    91. [91]

      Nobuyasu R S, Ren Z, Griffiths G C, Batsanov A S, Data P, Yan S, Monkman A P, Bryce M R, Dias F B. Adv Opt Mater, 2016, 4(4):597-607  doi: 10.1002/adom.v4.4

    92. [92]

      Ren Z, Nobuyasu R S, Dias F B, Monkman A P, Yan S, Bryce M R. Macromolecules, 2016, 49(15):5452-5460

  • 加载中
    1. [1]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    2. [2]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    3. [3]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    4. [4]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    5. [5]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    6. [6]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    7. [7]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    8. [8]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    9. [9]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    10. [10]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    11. [11]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    12. [12]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    13. [13]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    14. [14]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    15. [15]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    16. [16]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    17. [17]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    18. [18]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    19. [19]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    20. [20]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

Metrics
  • PDF Downloads(0)
  • Abstract views(102)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return