Citation: Rong Hu, De-hua Xin, An-jun Qin, Ben Zhong Tang. Polymers with Aggregation-induced Emission Characteristics[J]. Acta Polymerica Sinica, ;2018, (2): 132-144. doi: 10.11777/j.issn1000-3304.2018.17280 shu

Polymers with Aggregation-induced Emission Characteristics

  • Organic luminescent materials have played important roles in optoelectronic device, chemo-/biosensing, and biomedical applications. However, traditional luminescent materials always suffer from the aggregation-caused quenching (ACQ) effect:they are highly emissive in dilute solutions but their emission becomes weaker or totally quenched in the practical application forms, i.e. the aggregate, film and solid states. The ACQ effect has greatly limited the applications of these luminescent materials in many fields. Exactly opposite to the ACQ, the aggregation-induced emission (AIE) can actively utilize the natural aggregation process of a molecule to provide intense emission in the aggregate and solid states. In the AIE area, the research is focusing on the low mass molecules, and the polymers have been paid less attention although they possess the unique properties such as good film-forming ability, amplification effect of the signals, and multiple functionalization, which facilitates their practical applications. In this review, we first accounted the used polymerizations for the construction of AIE polymers, such as polycouplings, radical polymerization, and click polymerizations. Next, we discussed the structure-property relationship of the AIE polymers based on the systematically investigation of the effect of substituent groups, the link of TPE and fluorene groups on the triazole rings, the attachment of TPE-diethynyl groups on phenyl rings with o, m, and p-positions, and the side-chains on their photo-physical properties. Moreover, the interesting non-conjugated AIE polymers without aromatic rings were also discussed and cluster oluminescence was proposed as the cause for this unique emission. Finally, the applications of the AIE polymers in chemo-and biosensors, and tracing were reviewed and the advantages of AIE polymers over AIE low-mass molecules were also emphasized. It is expected that this review could serve as a trigger for future innovation in the AIE research area.
  • 加载中
    1. [1]

      Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Angew Chem Int Ed, 2011, 50:4056-4066  doi: 10.1002/anie.v50.18

    2. [2]

      Wong K M C, Yam V W W. Acc Chem Res, 2011, 44:424-434  doi: 10.1021/ar100130j

    3. [3]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Chem Rev, 2012, 112:1126-1162  doi: 10.1021/cr200101d

    4. [4]

      Hong Y N, Lam J W Y, Tang B Z. Chem Soc Rev, 2011, 40:5361-5388  doi: 10.1039/c1cs15113d

    5. [5]

      Luo J T, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem Commun, 2001, 1740-1741
       

    6. [6]

      Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem Rev, 2015, 115:11718-11940
       

    7. [7]

      Schaferling M. Angew Chem Int Ed, 2012, 51:3532-3554  doi: 10.1002/anie.v51.15

    8. [8]

      Feng X, Liu L, Wang S, Zhu D. Chem Soc Rev, 2010, 39:2411-2419
       

    9. [9]

      Yang Y M, Zhao Q, Feng W, Li F Y. Chem Rev, 2013, 113:192-270  doi: 10.1021/cr2004103

    10. [10]

      Mattoussi H, Palui G, Na H B. Adv Drug Delivery Rev, 2012, 64:138-166
       

    11. [11]

      Wong W Y, Ho C L. J Mater Chem, 2009, 19:4457-4482  doi: 10.1039/b819943d

    12. [12]

      Cicoira F, Santato C. Adv Funct Mater, 2007, 17:3421-3434
       

    13. [13]

      Yang J, Li L, Yu Y, Ren Z C, Peng Q, Ye S H, Li Q Q, Li Z. Mater Chem Front, 2017, 1:91-99  doi: 10.1039/C6QM00014B

    14. [14]

      Wang R, Yuan W Z, Zhu X Y. Chinese J Polym Sci, 2015, 33(5):680-687  doi: 10.1007/s10118-015-1635-x

    15. [15]

      Aifu N, dong X B, Li D Y, Sun X H, Zebibula A, Zahng D Q, Zhang G X, Qian J. Mater Chem Front, 2017, 1:1746-1753  doi: 10.1039/C7QM00092H

    16. [16]

      Wu W B, Ye S H, Huang L J, Xiao L, Fu Y J, Huang Q, Yu G, Liu Y Q, Qin J J, Li Q Q, Li Z. J Mater Chem, 2012, 22:6374-6382  doi: 10.1039/c2jm16514g

    17. [17]

      Yang Peipei, Dong Lichao, Li Yuanyuan, Zhang Longlong, Shi Jianbing, Zhi Junge, Tong Bin, Dong Yuping. Acta Polymerica Sinica, 2017, (8):1285-1293
       

    18. [18]

      Ding D, Li K, Liu B, Tang B Z. Acc Chem Res, 2013, 46:2441-2453  doi: 10.1021/ar3003464

    19. [19]

      Yuan W Z, Zhao H, Shen X Y, Mahtab F, Lam J W Y, Sun J, Tang B Z. Macromolecules, 2009, 42:9400-9411  doi: 10.1021/ma9012169

    20. [20]

      Yuan Y, Zhang C J, Liu B. Angew Chem Int Ed, 2015, 54:11419-11423  doi: 10.1002/anie.201503640

    21. [21]

      Lam J W Y, Chen J, Law C C W, Peng H, Xie Z, Cheuk K K L, Kwok H S, Tang B Z. Macromol Symp, 2003, 196:289-300  doi: 10.1002/masy.200390169

    22. [22]

      Li Y, Yu H, Qian Y, Hu J, Liu S. Adv Mater, 2014, 26:6734-6741  doi: 10.1002/adma.v26.39

    23. [23]

      Chen J W, Xie Z L, Lam J W Y, Law C C W, Tang B Z. Macromolecules, 2003, 36:1108-1117  doi: 10.1021/ma0213504

    24. [24]

      Chen J I, Wu W C. Macromol Biosci, 2013, 13:623-632  doi: 10.1002/mabi.201200396

    25. [25]

      Wang Z, Yong T Y, Wan J, Li Z H, Zhao H, Zhao Y, Gan L, Yang X L, Xu H B, Zhang C. ACS Appl Mater Interfaces, 2015, 7:3420-3425  doi: 10.1021/am509161y

    26. [26]

      Zhang X Y, Zhang X Q, Yang B, Liu M, Liu W, Chen Y, Wei Y. Polym Chem, 2014, 5:356-360
       

    27. [27]

      Wang H, Liu G, Dong S, Xiong J, Du Z, Cheng X. J Mater Chem B, 2015, 3:7401-7407
       

    28. [28]

      Wang Z, Chen S, Lam J W Y, Qin W, Kwok R T K, Xie N, Hu Q, Tang B Z. J Am Chem Soc, 2013, 135:8238-8245  doi: 10.1021/ja312581r

    29. [29]

      Yang B, Hui J, Liu M, Chi Z, Liu S, Xu J, Wei Y. Polym Chem, 2014, 5:683-688
       

    30. [30]

      Hu R R, Nelson L C, Tang B Z. Chem Soc Rev, 2014, 43:4494-4562  doi: 10.1039/C4CS00044G

    31. [31]

      Qin A J, Lam J W Y, Tang B Z. Prog Polym Sci, 2012, 37:182-209  doi: 10.1016/j.progpolymsci.2011.08.002

    32. [32]

      Hu R, Maldonado J L, Rodriguez M, Deng C, Jim C K W, Lam J W Y, Yuen M M F, Ramos Ortiz G, Tang B Z. J Mater Chem, 2012, 22:232-240  doi: 10.1039/C1JM13556B

    33. [33]

      Xu Y, Chen L, Guo Z, Nagai A, Jiang D. J Am Chem Soc, 2011, 133:17622-17625  doi: 10.1021/ja208284t

    34. [34]

      Chen C H, Lee S L, Lim T S, Chen C H, Luh T Y. Polym Chem, 2011, 2:2850-2856  doi: 10.1039/c1py00259g

    35. [35]

      Liu Y, Feng X, Shi J, Zhi J, Tong B, Dong Y. Chinese J Polym Sci, 2012, 30(3):443-450  doi: 10.1007/s10118-012-1135-1

    36. [36]

      Qin A J, Tang B Z, ed. Aggregation-Induced Emission: Fundamentals. Chichester: John-Wiley & Sons, Ltd, 2014. 1-418

    37. [37]

      Kabalka G W, Yao M L, Borella S, Wu Z, Ju Y H, Quick T. J Org Chem, 2008, 73:2668-2691  doi: 10.1021/jo702493j

    38. [38]

      Zhang X, Zhang X, Yang B, Hui J, Liu M, Chi Z, Liu S, Xu J, Wei Y. Polym Chem, 2014, 5:318-322  doi: 10.1039/C3PY01143G

    39. [39]

      Corriu R J P. Angew Chem Int Ed, 2000, 39:1376-1398  doi: 10.1002/(SICI)1521-3773(20000417)39:8<1376::AID-ANIE1376>3.0.CO;2-S

    40. [40]

      Gu P Y, Lu C J, Hu Z J, Li N J, Zhao T T, Xu Q F, Xu Q, Zhang J D, Lu J M. J Mater Chem C, 2013, 1:25-99
       

    41. [41]

      Qin A J, Jim C K W, Tang Y, Lam J W Y, Liu J, Mahtab F, Gao P, Tang B Z. J Phys Chem B, 2008, 112:9281-9288  doi: 10.1021/jp800296t

    42. [42]

      Chen J, Xie Z, Lam J W Y, Law C C W, Tang B Z. Macromolecules, 2003, 36:1108-1117  doi: 10.1021/ma0213504

    43. [43]

      Yuan W, Zhao H, Shen X, Mahtab F, Lam J W Y, Sun J, Tang B Z. Macromolecules, 2009, 42:9400-9411  doi: 10.1021/ma9012169

    44. [44]

      Hu R, Wang F, Li S, Nie C, Li M, Chen H, Liu L, Lv F, Wang S. Polym Chem, 2015, 6:8244-8247  doi: 10.1039/C5PY01403D

    45. [45]

      Lowe A B, Hoyle C E, Bowman C N. J Mater Chem, 2010, 20:4745-4750  doi: 10.1039/b917102a

    46. [46]

      Lowe A B. Polym Chem, 2010, 1:17-36  doi: 10.1039/B9PY00216B

    47. [47]

      Lowe A B. Polym Chem, 2014, 5:4820-4870
       

    48. [48]

      Tasdelen M A. Polym Chem, 2011, 2(10):2133-2145  doi: 10.1039/c1py00041a

    49. [49]

      Kempe K, Krieg A. Becer C R, Chem Soc Rev, 2012, 41:176-191  doi: 10.1039/C1CS15107J

    50. [50]

      Liu Y, Lam J W Y, Tang B Z. Natl Sci Rev, 2015, 2:493-509  doi: 10.1093/nsr/nwv047

    51. [51]

      Yao B C, Mei J, Li J, Wang J, Wu H, Sun J, Qin A J, Tang B Z. Macromolecules, 2014, 47:1325-1333  doi: 10.1021/ma402559a

    52. [52]

      Yao B C, Hu T, Zhang H, Li J, Sun J, Qin A J, Tang B Z. Macromolecules, 2015, 48:7782-7791  doi: 10.1021/acs.macromol.5b01868

    53. [53]

      He B, Su H, Bai T, Wu Y, Li S, Gao M, Hu R, Zhao Z, Qin A J, Ling J, Tang B Z. J Am Chem Soc, 2017, 139:5437-5443  doi: 10.1021/jacs.7b00929

    54. [54]

      Zhao E G, Li H, Ling J, Wu H, Wang J, Zhang S, Lam J W Y, Sun J Z, Qin A J, Tang B Z. Polym Chem, 2014, 5:2301-2308  doi: 10.1039/c3py01387a

    55. [55]

      Shi J, Wu Y, Sun S, Tong B, Zhi J, Dong Y. J Polym Sci, Part A:Polym Chem, 2013, 51:229-240  doi: 10.1002/pola.26377

    56. [56]

      Hu R R, Maldonado J L, Rodriguez M, Deng C, Jim C K W, Lam J K W Y, Yuen M M F, Ramos-Ortiz G, Tang B Z.J Mater Chem, 2012, 22:232-240
       

    57. [57]

      Liu X, He L, Wang C, Hanif I, Huang H, Bu W. J Mater Chem C, 2017, 5:3156-3166  doi: 10.1039/C7TC00273D

    58. [58]

      Ruff Y, Lehn J M. Angew Chem Int Ed, 2008, 47:3556-3559  doi: 10.1002/(ISSN)1521-3773

    59. [59]

      Sun M, Hong C Y, Pan C Y. J Am Chem Soc, 2012, 134:20581-20584
       

    60. [60]

      Zhao E, Lam J W Y, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang B Z. Macromolecules, 2015, 48:64-71  doi: 10.1021/ma502160w

    61. [61]

      Zhou X B, Luo W, Nie H, Xu L G, Hu R R, Zhao Z J, Qin A J, Tang B Z. J Mater Chem C, 2017, 5:4775-4779  doi: 10.1039/C7TC00868F

    62. [62]

      Shang C, Wei N, Zhuo H M, Shao Y M, Zhang Q, Zhang Z, Wang H L. J Mater Chem C, 2017, 5:8082-8090  doi: 10.1039/C7TC02381B

    63. [63]

      Zhan R Y, Pan Y T, Manghnani P N, Liu B. Macromol Biosci, 2017, 1600433
       

    64. [64]

      Zhu C, Liu L, Yang Q, Wang S. Chem Rev, 2012, 113:4687-4735
       

    65. [65]

      Zhou H, Wang X, Lin T, Song J, Tang B Z, Xu J W. Polym Chem, 2016, 7:6309-6317  doi: 10.1039/C6PY01358A

    66. [66]

      Li H, Wu H, Zhao E, Li J, Sun J, Qin A J, Tang B Z. Macromolecules, 2013, 46:3907-3914  doi: 10.1021/ma400609m

    67. [67]

      Dong W, Wu H, Chen M, Shi Y, Sun J, Qin A J, Tang B Z. Polym Chem, 2016, 7:5835-5839  doi: 10.1039/C6PY01202G

    68. [68]

      Li J W, Li Y, Chan C Y K, Kwork R T K, Li H K, Zrazheskiy P, Gao X H, Sun J Z, Qin A J, Tang B Z. Angew Chem Int Ed, 2014, 53:13518-13522  doi: 10.1002/anie.201408757

    69. [69]

      Feng L H, Liu L B, Lv F T, Bazan G C, Wang S. Adv Mater, 2014, 26:3926-3930  doi: 10.1002/adma.201305206

    70. [70]

      Wang L, Zhang H K, Qin A J, Jin Q, Tang B Z, Ji J. Sci China Chem, 2016, 59:1609-1615  doi: 10.1007/s11426-016-0246-9

    71. [71]

      Wang Z K, Chen S J, Lam J W Y, Qin W, Kwok R T K, Xie N, Hu Q L, Tang B Z. J Am Chem Soc, 2013, 135:8238-8245
       

    72. [72]

      Yuan Y, Kwok R T K, Tang B Z, Liu B. Small, 2015, 11:4682-4690  doi: 10.1002/smll.201501498

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    3. [3]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    5. [5]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    6. [6]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    18. [18]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    19. [19]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    20. [20]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

Metrics
  • PDF Downloads(0)
  • Abstract views(90)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return