Citation: En-dong Zhang, Li-bing Liu, Feng-ting Lv, Shu Wang. Water-soluble Conjugated Polymers for Biosensor Applications[J]. Acta Polymerica Sinica, ;2018, (2): 186-197. doi: 10.11777/j.issn1000-3304.2018.17269 shu

Water-soluble Conjugated Polymers for Biosensor Applications

  • Corresponding author: Shu Wang, wangshu@iccas.ac.cn
  • Received Date: 18 September 2017
    Revised Date: 2 November 2017

  • In recent years, conjugated polymers (CPs) with characteristic and excellent photochemical and photophysical properties have become particularly popular in scientific research and are widely used for biological sensing. Conjugated polymers are characterized by a delocalized electronic structure along their backbones and exhibit electronic coupling between each optoelectronic segments. Owing to unique delocalized π-conjugated structure, CPs are endowed with distinguished optical properties, such as light-harvesting and amplification capability and high energy transfer efficiency. Water-soluble conjugated polymers (WSCPs) introduced with charged groups or selectively-recognition elements on the side chains can specifically diagnose through electrostatic interaction or specific binding with targets. In addition, WSCPs with diverse absorption and emission characteristics have been designed and synthesized by tuning the constitution and conformation of the backbones. In contrast with fluorescence proteins, small organic molecules and quantum dots, CPs with greatly unique properties have greater advantages that directed to sensing and imaging in biochemical and biomedical fields. This review article is aimed to summarize recent research progresses on applications of WSCPs as biosensors for the detection of a series of biological targets. Firstly, according to electrostatics interaction of CPs and targeted DNA, different novel strategies are used for detection of DNA mutations (section 2). Meanwhile, CPs modified with recognition moieties can be utilized to detect specific proteins (section 3). In addition, based on different interaction modes between CPs and cells and pathogens, identification and discrimination of microbial pathogens and cells are realized (section 4). CPs can also be used for cell imaging due to their advantageous optical properties (section 5). The structures, characteristics and advantages of CPs, as well as various nove lidentifications and detections strategies are also discussed. Through a variety of design and modification, novel CPs can be obtained and used for identification and detection, which is complementary to traditional CPs in biosensor and widens the range of biological applications. It is worth mentioning that, with the development of inter-discipline, more attention should be paid to the combination of new methods and strategies for exploiting functions of CPs in biological sensing.
  • 加载中
    1. [1]

      Lakowicz J R, Koen P A, Szmacinski H, Gryczynski I, Kuśba J. J Fluoresc, 1994, 4(1):117-136  doi: 10.1007/BF01876666

    2. [2]

      de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figdor C G. J Cell Sci, 2001, 114:4153-4160
       

    3. [3]

      Fernández-Suárez M, Ting A Y. Nat Rev Mol Cell Biol, 2008, 9:929-943  doi: 10.1038/nrm2531

    4. [4]

      Weiss S. Science, 1999, 283(5408):1676-1683  doi: 10.1126/science.283.5408.1676

    5. [5]

      Ge X, Leah Tolosa A, Rao G. Anal Chem, 2004, 76(5):1403-1410  doi: 10.1021/ac035063p

    6. [6]

      Xia T, Li N, Fang X H. Annu Rev Phys Chem, 2013, 64:459-480  doi: 10.1146/annurev-physchem-040412-110127

    7. [7]

      Nienhaus K, Nienhaus G U. Chem Soc Rev, 2014, 43:1088-1106  doi: 10.1039/C3CS60171D

    8. [8]

      Rombouts K, Braeckmans K, Remaut K. Bioconjugate Chem, 2016, 27(2):280-297
       

    9. [9]

      Zhou J, Yang Y, Zhang C Y. Chem Rev, 2015, 115:11669-11717  doi: 10.1021/acs.chemrev.5b00049

    10. [10]

      Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem Rev, 2015, 115:11718-11940  doi: 10.1021/acs.chemrev.5b00263

    11. [11]

      Ito T, Shirakawa H, Ikeda S. J Polym Sci, Part A:Polym Chem, 1996, 34(13):2533-2542  doi: 10.1002/(ISSN)1099-0518

    12. [12]

      Chiang C K, Fincher C R J, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G. Phys Rev Lett, 1977, 39(17):1098-1101  doi: 10.1103/PhysRevLett.39.1098

    13. [13]

      Feng X, Liu L, Wang S, Zhu D. Chem Soc Rev, 2010, 39(7):2411-2419  doi: 10.1039/b909065g

    14. [14]

      Zhu C L, Liu L B, Yang Q, Lv F T, Wang S. Chem Rev, 2012, 112:4687-4735  doi: 10.1021/cr200263w

    15. [15]

      Yuan H X, Wang B, Lv F T, Liu L B, Wang S. Adv Mater, 2016, 26(40):6978-6982
       

    16. [16]

      Zhang Jiangyan, Yuan Huanxiang, Zhu Chunlei, Liu Libing, Lv Fengting, Wang Shu. Scientia Sinca Chimica, 2016, 46(2):153-162
       

    17. [17]

      Jiang Y F, McNeill J. Chem Rev, 2017, 117(2):838-859  doi: 10.1021/acs.chemrev.6b00419

    18. [18]

      Swager T M, Acc Chem Res, 1998, 31(5):201-207

    19. [19]

      Thomas S W, Joly G D, Swager T M. Chem Rev, 2007, 107(4):1339-1386  doi: 10.1021/cr0501339

    20. [20]

      Dexter D L. J Chem Phys, 1953, 21:836-850  doi: 10.1063/1.1699044

    21. [21]

      Forster T. Ann Phys, 1948, 2:55-58

    22. [22]

      Zhan R Y, Liu B. Macromol Chem Phys, 2015, 216(2):131-144

    23. [23]

      Rochat S, Swager T M. ACS Appl Mater Interfaces 2013, 5(11):4488-4502  doi: 10.1021/am400939w

    24. [24]

      Wang J W, Lv F T, Liu L B, Ma Y G, Wang S. Coord Chem Rev, 2018, 354:135-154  doi: 10.1016/j.ccr.2017.06.023

    25. [25]

      Heeger A J. Angew Chem Int Ed, 2001, 40(14):2591-2611  doi: 10.1002/(ISSN)1521-3773

    26. [26]

      Liu B, Wang S, Bazan G C. J Am Chem Soc, 2003, 125(44):13306-13307  doi: 10.1021/ja0365072

    27. [27]

      Feng L H, Zhu C L, Yuan H X, Liu L B, Wang S. Chem Soc Rev, 201342:6620-6633  doi: 10.1039/c3cs60036j

    28. [28]

      Xu L G, Cheng L, Wang C, Peng R, Liu Z. Polym Chem, 2014, 5(5):1573-1580  doi: 10.1039/C3PY01196H

    29. [29]

      Bai H T, Yuan H X, Nie C Y, Wang B, Lv F T, Liu L B, Wang S. Angew Chem Int Ed, 2015, 54(45):13208-13213
       

    30. [30]

      Baylin S B, Ohm J E. Nat Rev Cancer, 2006, 6(2):107-116  doi: 10.1038/nrc1799

    31. [31]

      Harris T J R, McCormick F. Nat Rev Clin Oncol, 2010, 7:251-265  doi: 10.1038/nrclinonc.2010.41

    32. [32]

      Sanger F, Nicklen S, Coulson A R. Proc Natl Acad Sci, 1977, 74(12):104-108

    33. [33]

      Ronaghi M, Uhlén M, Nyrén P. Science, 1998, 281(5375):363-365  doi: 10.1126/science.281.5375.363

    34. [34]

      Samuels Y, Wang Z H, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell S M, Riggins G J, Willson J K V, Markowitz S, Kinzler K W, Vogelstein B, Velculescu V E. Science, 2004, 304(5670):554  doi: 10.1126/science.1096502

    35. [35]

      Wittwer C T, Reed G H, Gundry C N, Vandersteen J G, Pryor R J. Clin Chem, 2003, 49(6):853-860  doi: 10.1373/49.6.853

    36. [36]

      Inazuka M, Tahira T, Hayashi K. Genome Res, 1996, 6(6):551-557  doi: 10.1101/gr.6.6.551

    37. [37]

      Board R E, Thelwell N J, Ravetto P F, Little S, Ranson M, Dive C, Hughes A, Whitcombe D. Clin Chem, 2008, 54(4):757-760  doi: 10.1373/clinchem.2007.098376

    38. [38]

      Holland P M, Abramson R D, Watson R, Gelfand D H. Proc Natl Acad Sci, 1991, 88(16):7276-7280  doi: 10.1073/pnas.88.16.7276

    39. [39]

      Hurst C D, Zuiverloon T C M, Hafner C, Zwarthoff E C, Knowles M A. BMC Res Notes, 2009, 2(1):66  doi: 10.1186/1756-0500-2-66

    40. [40]

      Song J Z, Yang Q, Lv F T, Liu L B, Wang S. ACS Appl Mater Interfaces, 2012, 4(6):2885-2890  doi: 10.1021/am300830r

    41. [41]

      Wang X Y, He F, Tang F, Li L D. J Mater Chem, 2012, 22(30):15303-15308  doi: 10.1039/c2jm32534a

    42. [42]

      Song J Z, Zhang J Y, Lv F T, Cheng Y Q, Wang B, Feng L H, Liu L B, Wang S. Angew Chem Int Ed, 2013, 52(49):13020-13023
       

    43. [43]

      Ehrlich M. Oncogene, 2002, 21(35):5400-5413  doi: 10.1038/sj.onc.1205651

    44. [44]

      Esteller M, Herman J G. J Pathol, 2002, 196(1):1-7  doi: 10.1002/(ISSN)1096-9896

    45. [45]

      Robertson K D. Oncogene, 2001, 20(24):3139-3155  doi: 10.1038/sj.onc.1204341

    46. [46]

      Yang Q, Dong Y, Wu W, Zhu C L, Chong H, Lu J Y, Yu D H, Liu L B, Lv F T, Wang S. Nat Commun, 2012, 3:1206
       

    47. [47]

      Zhang J Y, Xing B L, Song J Z, Nie C Y, Jiao L, Liu L B, Lv F T, Wang S. Anal Chem, 2014, 86(1):346-350  doi: 10.1021/ac402720g

    48. [48]

      Feng F D, Liu L B, Yang Q, Wang S. Macromol Rapid Commun, 2010, 31(16):1405-1421  doi: 10.1002/marc.201000020

    49. [49]

      Liu Xingfen, CaiXiaohui, Huang Yanqin, Shi Lin, Fan Quli, Huang Wei. Acta Chimica Sinica, 2014, 72(4):440-446
       

    50. [50]

      Sun Pengfei, Fan Quli, Liu Lulin, Deng Weixing, Lu Xiaomei, Huang Wei. Acta Polymerica Sinica, 2014, (12):1629-1634
       

    51. [51]

      Wang X Y, Li S L, Zhang P B, Lv F T, Liu L B, Wang S. Adv Mater, 2015, 27(39):6040-6045  doi: 10.1002/adma.201502880

    52. [52]

      Imaoka M, Yano S, Okumura M, Hibi T, Wakayama M. Biosci Biotechnol Biochem, 2010, 74(9):1936-1939
       

    53. [53]

      Ryan C J, Peng W, Kheoh T, Welkowsky E, Haqq C M, Chandler D W, Scher H I, Molina A. Prostate Cancer P D, 2014, 172(2):192-198
       

    54. [54]

      Wen Q S, Zhu C L, Liu L B, Yang Q, Wang S, Zhu D B. Macromol Chem Phys, 2012, 213(23):2486-2491  doi: 10.1002/macp.v213.23

    55. [55]

      Liu Xingfen, Hua Xiaoxiao, Huang Yanqin, Feng Xiaomiao, Fan Quli, Huang Wei. Chemistry Bulletin, 2015, 78(10):895-901
       

    56. [56]

      Liu Xingfen, Wang Yateng, Huang Yanqin, Feng Xiaomiao, Fan Quli, Huang Wei. Acta Chimica Sinica, 2016, 74(8):664-668
       

    57. [57]

      Gu P, Liu X F, Tian Y Y, Zhang L, HuangY Q, Su S, Feng X M, Fan Q L, Huang W. Sensors Actuat B-Chem, 2017, 246:78-84  doi: 10.1016/j.snb.2017.01.043

    58. [58]

      Lazcka O, Del Campo F J, Munoz F X. Biosens Bioelectron, 2007, 22(7):1205-1217  doi: 10.1016/j.bios.2006.06.036

    59. [59]

      Yuan H X, Liu Z, Liu L B, Lv F T, Wang Y L, Wang S. Adv Mater, 2014, 26(25):4333-4338  doi: 10.1002/adma.v26.25

    60. [60]

      Bai H T, Chen H, Hu R, Li M, Lv F T, Liu L B, Wang S. ACS Appl Mater Interfaces, 2016, 8(46):31550-31557  doi: 10.1021/acsami.6b09807

    61. [61]

      Nie C Y, Li S L, Wang B, Liu L B, Hu R, Chen H, Lv F T, Dai Z, Wang S. Adv Mater, 2016, 28(19):3749-3754  doi: 10.1002/adma.201600106

    62. [62]

      Huang Y Q, Yao X, Zhang R, Ouyang L, Jiang R C, Liu X F, Song C X, Zhang G W, Fan Q L, Wang L H, Huang W. ACS Appl Mater Interfaces, 2014, 6(21):19144-19153  doi: 10.1021/am505113p

    63. [63]

      Nie C Y, Wang B, Zhang J Y, Cheng Y Q, Lv F T, Liu L B, Wang S. Small, 2015, 11(21):2555-2563  doi: 10.1002/smll.v11.21

    64. [64]

      Liu R H, Cui Q L, Wang C, Wang X Y, Yu Y, Li L D. ACS Appl Mater Interfaces, 2017, 9(3):3006-3015  doi: 10.1021/acsami.6b14320

    65. [65]

      Song J Z, Lv F T, Yang G M, Liu L B, Yang Q, Wang S. Chem Commun, 2012, 48(60):7465-7467  doi: 10.1039/c2cc32085a

    66. [66]

      Feng L H, Liu L B, Lv F T, Bazan G C, Wang S. Adv Mater, 2014, 26(23):3926-3930  doi: 10.1002/adma.201305206

    67. [67]

      Xia B H, Wang X Y, He F, Cui Q L, Li L D. ACS Appl Mater Interfaces, 2012, 4(11):6332-6337  doi: 10.1021/am301945k

    68. [68]

      Wang B, Zhu C L, Liu L B, Lv F T, Yang Q, Wang S. Polym Chem, 2013, 4(20):5212-5215  doi: 10.1039/c3py00097d

    69. [69]

      Cui Q L, Wang X Y, Yang Y, Li S L, Li L D, Wang S. Chem Mater, 2016, 28(13):4661-4669  doi: 10.1021/acs.chemmater.6b01424

    70. [70]

      Wang F Y, Liu Z, Wang B, Feng L H, Liu L B, Lv F T, Wang Y L, Wang S. Angew Chem, 2014, 126(2):434-438  doi: 10.1002/ange.v126.2

    71. [71]

      Wang Y X, Li S L, Feng L H, Nie C Y, Liu L B, Lv F T, Wang S. ACS Appl Mater Interfaces, 2015, 7(43):24110-24118  doi: 10.1021/acsami.5b07172

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    5. [5]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    19. [19]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    20. [20]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

Metrics
  • PDF Downloads(0)
  • Abstract views(86)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return