Citation: Wen-tao Xiong, Yi-kun Guo, Da-hui Zhao, Yan-ming Sun. High-performance All Polymer Solar Cells Fabricated with Non-halogenated Solvent[J]. Acta Polymerica Sinica, ;2018, (2): 315-320. doi: 10.11777/j.issn1000-3304.2018.17267 shu

High-performance All Polymer Solar Cells Fabricated with Non-halogenated Solvent

  • Corresponding author: Yan-ming Sun, sunym@buaa.edu.cn
  • Received Date: 14 September 2017
    Revised Date: 18 October 2017

  • Despite the rapid progress that has been made in increasing the power conversion efficiency (PCE) of organic solar cells (OSCs) over the past decade, it is a challenge to realize efficient and environment-friendly OSCs. In this contribution, all polymer solar cells were fabricated with a blend of poly[4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1, 2-b:4, 5-b']dithiophene-co-3-fluorothieno[3, 4-b]thiophene-2-carboxylate] (PTB7-Th) donor and vinylene-bridged perylenediimide-based polymer (PDI-V) acceptor, in which non-halogenated tetrahydrofuran (THF) was used as the host solvent. A conventional device structure of ITO/poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/PTB7-Th:PDI-V/zirconium acetylacetonate (ZrAcac)/Al was employed, where PEDOT:PSS functioned as the hole transporting layer (HTL) and ZrAcac functioned as the electron transporting layer (ETL). The mixed solution of PTB7-Th and PDI-V was spin cast on the top of PEDOT:PSS layer to form the active layer. After that, ZrAcac solution was spin cast on the top of PTB7-Th:PDI-V layer. Different thermal annealing temperatures were used to optimize the active layer morphology. In details, OSCs without thermal annealing showed a PCE of 7.1%, with a short-circuit current (JSC) of 14.9 mA/cm2, an open-circuit voltage (VOC) of 0.74 V, and a fill factor (FF) of 64%. The devices annealed at 120℃ showed a high PCE of 8.1% with a JSC of 15.5 mA/cm2, a VOC of 0.74 V, and a FF of 70%. Further increasing the annealing temperature to 150℃ led to decreased FF and thereby a relatively lower PCE (7.4%). To the best of our knowledge, the PCE of~8.1% is one of the highest PCE values reported in the literature so far for all polymer solar cells. The high and balanced hole and electron mobility partially contributed to such a high performance. These results suggest that THF as good non-halogenated solvent can be used to fabricate high-performance all polymer solar cells. Higher efficiency can be achieved for OSCs with THF solvent when better polymer acceptors are employed.
  • 加载中
    1. [1]

      Amarasinghe Vithanage D, Devizis A, Abramavicius V, Infahsaeng Y, Abramavicius D, MacKenzie R C, Keivanidis P E, Yartsev A, Hertel D, Nelson J, Sundstrom V, Gulbinas V. Nat Commun, 2013, 4:2334
       

    2. [2]

      Bartesaghi D, Perez Idel C, Kniepert J, Roland S, Turbiez M, Neher D, Koster L J. Nat Commun, 2015, 6:7083  doi: 10.1038/ncomms8083

    3. [3]

      Bredas J L, Sargent E H, Scholes G D. Nat Mater, 2016, 16(1):35-44
       

    4. [4]

      Poelking C, Tietze M, Elschner C, Olthof S, Hertel D, Baumeier B, Wurthner F, Meerholz K, Leo K, Andrienko D. Nat Mater, 2015, 14(4):434-439  doi: 10.1038/nmat4167

    5. [5]

      Tumbleston J R, Collins B A, Yang L, Stuart A C, Gann E, Ma W, You W, Ade H. Nat Photonics, 2014, 8(5):385-391
       

    6. [6]

      Vandewal K, Albrecht S, Hoke E T, Graham K R, Widmer J, Douglas J D, Schubert M, Mateker W R, Bloking J T, Burkhard G F, Sellinger A, Frechet J M, Amassian A, Riede M K, McGehee M D, Neher D, Salleo A. Nat Mater, 2014, 13(1):63-68  doi: 10.1038/nmat3807

    7. [7]

      Wu B, Wu X, Guan C, Fai Tai K, Yeow E K, Jin Fan H, Mathews N, Sum T C. Nat Commun, 2013, 4:2004
       

    8. [8]

      Yang Y, Chen W, Dou L, Chang W H, Duan H S, Bob B, Li G, Yang Y. Nature Photonics, 2015, 9(3):190-198  doi: 10.1038/nphoton.2015.9

    9. [9]

      Zhao W, Li S, Zhang S, Liu X, Hou J. Adv Mater, 2017, DOI:10.1002/adma.201604059  doi: 10.1002/adma.201604059

    10. [10]

      Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28(42):9423-9429
       

    11. [11]

      Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27(7):1170-1174  doi: 10.1002/adma.201404317

    12. [12]

      Lin Y, Zhao F, He Q, Huo L, Wu Y, Parker T C, Ma W, Sun Y, Wang C, Zhu D, Heeger A J, Marder S R, Zhan X. J Am Chem Soc, 2016, 138(14):4955-4961  doi: 10.1021/jacs.6b02004

    13. [13]

      Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv Mater, 2016, 28(37):8283-8287
       

    14. [14]

      Liu X, Liu T, Duan C, Wang J, Pang S, Xiong W, Sun Y, Huang F, Cao Y. J Mater Chem A, 2017, 5(4):1713-1723  doi: 10.1039/C6TA08739F

    15. [15]

      Luo Z, Xiong W, Liu T, Cheng W, Wu K, Sun Y, Yang C. Organic Electronics, 2017, 41:166-172  doi: 10.1016/j.orgel.2016.10.044

    16. [16]

      Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim J Y, Sun Y, Wang Z, Heeger A J. J Am Chem Soc, 2016, 138(1):375-380  doi: 10.1021/jacs.5b11149

    17. [17]

      Zang Y, Li C Z, Chueh C C, Williams S T, Jiang W, Wang Z H, Yu J S, Jen A K. Adv Mater, 2014, 26(32):5708-5714  doi: 10.1002/adma.201401992

    18. [18]

      Liu T, Meng D, Cai Y, Sun X, Li Y, Huo L, Liu F, Wang Z, Russell T P, Sun Y. Adv Sci (Weinh), 2016, 3(9):1600117  doi: 10.1002/advs.201600117

    19. [19]

      Zhou E, Cong J, Wei Q, Tajima K, Yang C, Hashimoto K. Angew Chem Int Ed, 2011, 50(12):2799-2803
       

    20. [20]

      Zhou N, Dudnik A S, Li T I, Manley E F, Aldrich T J, Guo P, Liao H C, Chen Z, Chen L X, Chang R P, Facchetti A, Olvera de la Cruz M, Marks T J. J Am Chem Soc, 2016, 138(4):1240-1251  doi: 10.1021/jacs.5b10735

    21. [21]

      Li Z, Xu X, Zhang W, Meng X, Ma W, Yartsev A, Inganas O, Andersson M R, Janssen R A, Wang E. J Am Chem Soc, 2016, 138(34):10935-10944
       

    22. [22]

      Ding Z, Long X, Dou C, Liu J, Wang L. Chem Sci, 2016, 7(9):6197-6202  doi: 10.1039/C6SC01756H

    23. [23]

      Oh J, Kranthiraja K, Lee C, Gunasekar K, Kim S, Ma B, Kim B J, Jin S H. Adv Mater, 2016, 28(45):10016-10023  doi: 10.1002/adma.201602298

    24. [24]

      Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28(30):6504-6508

    25. [25]

      Diao Y, Zhou Y, Kurosawa T, Shaw L, Wang C, Park S, Guo Y, Reinspach J A, Gu K, Gu X, Tee B C, Pang C, Yan H, Zhao D, Toney M F, Mannsfeld S C, Bao Z. Nat Commun, 2015, 6:7955
       

    26. [26]

      Chen S, An Y, Dutta G K, Kim Y, Zhang Z G, Li Y, Yang C. Adv Funct Mater, 2017, 27(2):1603564  doi: 10.1002/adfm.v27.2

    27. [27]

      Xie D, Liu T, Gao W, Zhong C, Huo L, Luo Z, Wu K, Xiong W, Liu F, Sun Y, Yang C. Solar RRL, 2017, 1(6):1700044  doi: 10.1002/solr.201700044

    28. [28]

      Nakano K, Nakano M, Xiao B, Zhou E, Suzuki K, Osaka I, Takimiya K, Tajima K. Macromolecules, 2016, 49(5):1752-1760
       

    29. [29]

      Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder S R. J Am Chem Soc, 2007, 129(23):7246  doi: 10.1021/ja071760d

    30. [30]

      Zhou E, Nakano M, Izawa S, Cong J, Osaka I, Takimiya K, Tajima K. ACS Macro Lett, 2014, 3(9):872-875
       

    31. [31]

      Zhou E, Tajima K, Yang C, Hashimoto K. J Mater Chem, 2010, 20(12):2362  doi: 10.1039/b923452g

    32. [32]

      Yang F, Li C, Feng G T, Jiang X D, Zhang A D, Li W W. Chinese J Polym Sci, 2016, 35(2):239-248
       

    33. [33]

      Yu C, Xu Y, Liang S, Jiang X, Feng G, Li C, Li W. Chinese Chem Lett, 2017, DOI:10.1016/j.cclet.2017.08.016  doi: 10.1016/j.cclet.2017.08.016

    34. [34]

      Chang H, Chen Z, Yang X, Yin Q, Zhang J, Ying L, Jiang X-F, Xu B, Huang F, Cao Y. Organic Electronics, 2017, 45:227-233  doi: 10.1016/j.orgel.2017.03.022

    35. [35]

      Fan B, Ying L, Wang Z, He B, Jiang X-F, Huang F, Cao Y. Energy Environ Sci, 2017, 10(5):1243-1251  doi: 10.1039/C7EE00619E

    36. [36]

      Yang J, Xiao B, Tajima K, Nakano M, Takimiya K, Tang A, Zhou E. Macromolecules, 2017, 50(8):3179-3185  doi: 10.1021/acs.macromol.7b00414

    37. [37]

      Li S, Zhang H, Zhao W, Ye L, Yao H, Yang B, Zhang S, Hou J. Adv Energy Mater, 2016, 6(5):1501991  doi: 10.1002/aenm.201501991

    38. [38]

      Zheng Z, Awartani O M, Gautam B, Liu D, Qin Y, Li W, Bataller A, Gundogdu K, Ade H, Hou J. Adv Mater, 2017, 29(5):201604241

    39. [39]

      Guo Y, Li Y, Awartani O, Zhao J, Han H, Ade H, Zhao D, Yan H. Adv Mater, 2016, 28(38):8483-8489  doi: 10.1002/adma.v28.38

    40. [40]

      Tan Z, Li S, Wang F, Qian D, Lin J, Hou J, Li Y. Sci Rep, 2014, DOI:10.1038/srep04691  doi: 10.1038/srep04691

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    4. [4]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    13. [13]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    14. [14]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    17. [17]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(0)
  • Abstract views(140)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return