Citation: Zhong Wen-kai, Xie Rui-hao, Ying Lei, Huang Fei, Cao Yong. High Performance Polymer Photodetectors Enabled by a Naphtho[1, 2-c: 5, 6-c']bis([1, 2, 5]thiadiazole) Based π-Conjugated Polymer[J]. Acta Polymerica Sinica, ;2018, (2): 217-222. doi: 10.11777/j.issn1000-3304.2018.17242 shu

High Performance Polymer Photodetectors Enabled by a Naphtho[1, 2-c: 5, 6-c']bis([1, 2, 5]thiadiazole) Based π-Conjugated Polymer

  • Naphtho[1, 2-c:5, 6-c']bis([1, 2, 5]thiadiazole) (NT) unit with centro-symmetric and enlarged planar π-conjugated structure is one of the most promising electron-withdrawing moieties for the construction of high-performance conjugated polymers for solar cells and organic field-effect transistors. Recently, an NT based narrow-bandgap conjugated polymer (NTOD), consisting of NT as the electron-withdrawing unit and 2, 5-bis(3-alkylthiophen-2-yl)thieno[3, 2-b]thiophene as the electron-donating unit, has been developed, which exhibited a remarkable power conversion efficiency exceeding 10% and might be used to construct device with thick active layer over 300 nm. Considering the impressive photovoltaic performances achieved based on the NT-polymers, here we designed and fabricated solution-processed polymer photodetectors using NTOD as the electron donor. Device with architecture of ITO/PEDOT:PSS/active layer/Al was fabricated to investigate the performance of the photodetector. The active layer was comprised of NTOD as the electron donor and a fullerene derivative of (6, 6)-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor, which displayed broad absorption spectra ranging from 400 nm to 830 nm. We noted that the dark current density of the photodetectors was effectively suppressed by increasing the thickness of the NTOD:PC71BM based active layer, while the external quantum efficiency (EQE) of the devices maintained relatively high. It is also worth pointing out that, when the thickness of the active layer increased up to 385 nm, the device exhibited low dark current density of 6.69×10-10 A cm-2 at -0.1 V, for which the specific detectivity (D*) is higher than 1013 cm Hz1/2 W-1 in the range of 440-800 nm, with champion detectivity of 1.50×1013 cm Hz1/2 W-1 and responsivity of 0.22 A W-1 at 750 nm. Moreover, the polymer photodetector exhibited a high detectivity of 1.10×1013 cm Hz1/2 W-1 at 800 nm, suggesting the good detectivity extending to near-infrared (NIR) region. These results indicate that the NTOD polymer has great potential for the construction of high performance polymer photodetectors.
  • 加载中
    1. [1]

      Zhang Z G, Li Y F. Sci China Chem, 2015, 58(2):192-209  doi: 10.1007/s11426-014-5260-2

    2. [2]

      Huang Fei, Cao Yong. Acta Polymerica Sinica, 2016, (4):399-401  doi: 10.11777/j.issn1000-3304.2016.16111
       

    3. [3]

      Jiang Yu, Gao Yao, Tian Hongkun, Ding Junqiao, Geng Yanhou, Wang Fosong. Acta Polymerica Sinica, 2017, (7):1141-1149
       

    4. [4]

      Guo Ting, Zhong Wenkai, Zou Jianhua, Ying Lei, Yang Wei, Peng Junbiao. Acta Polymerica Sinica, 2016, (3):360-367  doi: 10.11777/j.issn1000-3304.2016.15208
       

    5. [5]

      Liang J F, Ying L, Huang F, Cao Y. J Mater Chem C, 2016, 4(47):10993-11006  doi: 10.1039/C6TC03468C

    6. [6]

      Liang J F, Ying L, Yang W, Peng J B, Cao Y. J Mater Chem C, 2017, 5(21):5096-5101  doi: 10.1039/C7TC01705G

    7. [7]

      Yao Huifeng, Hou Jianhui. Acta Polymerica Sinica, 2016, (11):1468-1481
       

    8. [8]

      Li Z, Fan B, He B, Ying L, Zhong W, Liu F, Huang F, Cao Y. Sci China Chem, 2018, DIO:10.1007/s11426-017-9188-7

    9. [9]

      Fan B B, Ying L, Wang Z F, He B T, Jiang X F, Huang F, Cao Y. Energy Environ Sci, 2017, 10(5):1243-1251  doi: 10.1039/C7EE00619E

    10. [10]

      Lan L Y, Chen Z, Hu Q, Ying L, Zhu R, Liu F, Russell T P, Huang F, Cao Y. Adv Sci, 2016, 3(9):1600032  doi: 10.1002/advs.201600032

    11. [11]

      Fan B B, Ying L, Zhu P, Pan F L, Liu F, Chen J W, Huang F, Cao Y. Adv Mater, 2017, DOI:10.1002/adma.201703906  doi: 10.1002/adma.201703906

    12. [12]

      Bazan G C. Sci China Chem, 2017, 60(8):1109-1110  doi: 10.1007/s11426-017-9075-9

    13. [13]

      Ying L, Huang F, Bazan G C. Nat Commun, 2017, 7:14047

    14. [14]

      Zhong W K, Sun S, Ying L, Liu F, Lan L F, Huang F, Cao Y. ACS Appl Mater Interfaces, 2017, 9(8):7315-7321  doi: 10.1021/acsami.6b13673

    15. [15]

      Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J. Science, 2009, 325(5948):1665-1667  doi: 10.1126/science.1176706

    16. [16]

      Zhang L Z, Yang T B, Shen L, Fang Y J, Dang L, Zhou N J, Guo X G, Hong Z R, Yang Y, Wu H B, Huang J S, Liang Y Y. Adv Mater, 2015, 27(41):6496-6503  doi: 10.1002/adma.201502267

    17. [17]

      Wu S P, Xiao B A, Zhao B F, He Z C, Wu H B, Cao Y. Small, 2016, 12(25):3374-3380  doi: 10.1002/smll.v12.25

    18. [18]

      Qi J, Han J F, Zhou X K, Yang D Z, Zhang J D, Qiao W Q, Ma D G, Wang Z Y. Macromolecules, 2015, 48(12):3941-3948  doi: 10.1021/acs.macromol.5b00859

    19. [19]

      Hu X W, Dong Y, Huang F, Gong X, Cao Y. J Phys Chem C, 2013, 117(13):6537-6543  doi: 10.1021/jp4001237

    20. [20]

      Zhang B Y, Trinh M T, Fowler B, Ball M, Xu Q Z, Ng F, Steigerwald M L, Zhu X Y, Nuckolls C, Zhong Y J. Am Chem Soc, 2016, 138(50):16426-16431  doi: 10.1021/jacs.6b10276

    21. [21]

      Qi J, Zhou X K, Yang D Z, Qiao W Q, Ma D G, Wang Z Y. Adv Funct Mater, 2014, 24(48):7605-7612  doi: 10.1002/adfm.v24.48

    22. [22]

      Li L S, Huang Y Y, Peng J B, Cao Y, Peng X B. J Mater Chem C, 2014, 2(8):1372-1375  doi: 10.1039/c3tc32171a

    23. [23]

      Hu X W, Wang K, Liu C, Meng T Y, Dong Y, Liu S J, Huang F, Gong X, Cao Y. J Mater Chem C, 2014, 2(45):9592-9598  doi: 10.1039/C4TC02021A

    24. [24]

      Li W, Li Q D, Liu S J, Duan C H, Ying L, Huang F, Cao Y. Sci China Chem, 2015, 58(2):257-266  doi: 10.1007/s11426-014-5275-8

    25. [25]

      Jin Y C, Chen Z, Xiao M, Peng J, Fan B, Ying L, Zhang G, Jiang X, Yin Q, Liang Z, Huang F, Cao Y. Adv Energy Mater, 2017, DOI:10.1002/aenm.201700944  doi: 10.1002/aenm.201700944

    26. [26]

      Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H. Adv Energy Mater, 2013, 3(7):864-872  doi: 10.1002/aenm.v3.7

    27. [27]

      Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H. Nat Commun, 2014, 5:5293  doi: 10.1038/ncomms6293

    28. [28]

      Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang X F, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28(44):9811-9818  doi: 10.1002/adma.201603178

    29. [29]

      Lu Junming, Cai Wanqing, Zhang Guichuan, Liu Shengjian, Ying Lei, Huang Fei. Acta Chimica Sinica, 2015, 73(11):1153-1160

    30. [30]

      Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y. Adv Mater, 2007, 19(22):3979-3983  doi: 10.1002/(ISSN)1521-4095

    31. [31]

      Armin A, Jansen-van Vuuren R D, Kopidakis N, Burn P L, Meredith P. Nat Commun, 2015, 6:6343  doi: 10.1038/ncomms7343

    32. [32]

      Zhong Y, Sisto T J, Zhang B Y, Miyata K, Zhu X Y, Steigerwald M L, Ng F, Nuckolls C. J Am Chem Soc, 2017, 139(16):5644-5647  doi: 10.1021/jacs.6b13089

  • 加载中
    1. [1]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    4. [4]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    5. [5]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    6. [6]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    7. [7]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(0)
  • Abstract views(103)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return