Citation: Chun-peng Song, Yi Qu, Jian-gang Liu, Yan-chun Han. Phase-separation Mechanism and Morphological Control in All-polymer Solar Cells[J]. Acta Polymerica Sinica, ;2018, (2): 145-163. doi: 10.11777/j.issn1000-3304.2018.17236 shu

Phase-separation Mechanism and Morphological Control in All-polymer Solar Cells

  • Compared to the polymer/fullerene system, all-polymer solar cells, based on conjugated polymers as both donor and acceptor, have many potential advantages such as achieving more efficient light absorption and high open-circuit voltage, as well as easily solution processing and large-area fabrication. Strongly promoted by developments of materials and device structure, the power conversion efficiency (PCE) has been reached 9%. However, conjugated polymers have more rigid molecules compared to the flexible polymers and thus will form chain entanglement and π-π interaction with each other, leading to a more complex phase separation process in the conjugated polymer system. Besides, the strong molecular interaction between donor and acceptor polymers may generate a long-range phase domain in the blend films, which will inhibit the excitons to diffuse to the donor/acceptor (D/A) phase interface. In addition, the difference of thermodynamics steady state between the donor and the acceptor polymers may lead to the formation of different molecular orientation, which will impede the exciton dissociation. To solve these problems, by tuning the thermodynamic and dynamics factors, including molecular rigidity and blend ratio, the phase-separated structure of the conjugated polymer blend system was adjusted and the phase separation mechanism was identified, based on which the phase diagram of the conjugated polymer blend was depicted. By controlling phase separation structure, the interpenetrating networks were obtained, facilitating the charge transfer and collection. Besides, the domain size and film crystallinity were adjusted by reducing the solvent-polymer interaction parameter and polymer-polymer interaction parameters. Due to the decreased domain size, the efficiency of the exciton diffusion was enhanced. In addition, the solution state or molecular diffusion rate was adjusted to adjust the molecular orientation. By increasing the aggregation of the polymers in solution and introducing the epitaxial crystallization, the molecular orientation could change from edge-on to face-on. The identical molecular orientation for the donor and the acceptor improved the exciton dissociation efficiency and the device performance.
  • 加载中
    1. [1]

      Lungenschmied C, Dennler G, Neugebauer H, Sariciftci S N, Glatthaar M, Meyer T, Meyer A. Sol Energy Mater Sol Cells, 2007, 91(5):379-384
       

    2. [2]

      Kalowekamo J, Baker E. Sol Energy, 2009, 83(8):1224-1231  doi: 10.1016/j.solener.2009.02.003

    3. [3]

      Yao Huifeng, Hou Jianhui. Acta Polymerica Sinica, 2016, (11):1468-1481
       

    4. [4]

      Deng Yunfeng, Bao Cheng, Tian Hongkun, Xie Zhiyuan, Geng Yanhou. Acta Polymerica Sinica, 2013, (5):609-618
       

    5. [5]

      Deng Yanghua, Xiao Haibin, Qiao He, Tan Songting. Acta Polymerica Sinica, 2017, (6):922-929
       

    6. [6]

      Yang Shu, Zhang Wei, Shen Xingxing, Liu Ying, Du Xiaoyan, Chen Shan, Xiao Zuo, Yang Zhenyu, Zuo Qiqun, Ding Liming. Acta Polymerica Sinica, 2012, (8):838-845
       

    7. [7]

      Qin Y P, Chen Y, Cui Y, Zhang S Q, Yao H F, Huang J, Li W N, Zheng Z, Hou J H. Adv Mater, 2017, 29(24):1606340-1606347  doi: 10.1002/adma.201606340

    8. [8]

      Zhao W C, Li S S, Zhang S Q, Liu X Y, Hou J H. Adv Mater, 2017, 29(2):59-66
       

    9. [9]

      Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, MccullOCh I, Ha C S, Ree M. Nat Mater, 2006, 5(3):197-203  doi: 10.1038/nmat1574

    10. [10]

      Bijleveld J C, Zoombelt A P, Mathijssen S G J, Wienk M M, Turbiez M, de Leeuw D M, Janssen R A J. J Am Chem Soc, 2009, 131(46):16616-16617  doi: 10.1021/ja907506r

    11. [11]

      McNeill C R. Energy & Environmental Science, 2012, 5(2):5653-5667
       

    12. [12]

      Tipnis R, Bernkopf J, Jia S J, Krieg J, Li S, Storch M, Laird D. Sol Energy Mater Sol Cells, 2009, 93(4):442-446  doi: 10.1016/j.solmat.2008.11.018

    13. [13]

      Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B. Nature, 1995, 376(6540):498-500  doi: 10.1038/376498a0

    14. [14]

      Yu G, Heeger A J. J Appl Phys, 1995, 78(7):4510-4515  doi: 10.1063/1.359792

    15. [15]

      Fan B, Ying L, Wang Z, He B, Jiang X F, Huang F, Cao Y. Energy Environ Sci, 2017, 10(5):1243-1251  doi: 10.1039/C7EE00619E

    16. [16]

      Mazzio K A, LuSCombe C K. Chem SOC Rev, 2015, 44(1):78-90
       

    17. [17]

      Huang Y, Kramer E J, Heeger A J, Bazan G C. Chem Rev, 2014, 114(14):7006-7043  doi: 10.1021/cr400353v

    18. [18]

      Chen L M, Hong Z R, Li G, Yang Y. Adv Mater, 2009, 21(14-15):1434-1449
       

    19. [19]

      He M, Wang M Y, Lin C J, Lin Z Q. NanoSCale, 2014, 6(8):3984-3994
       

    20. [20]

      Chiu M Y, Jeng U S, Su M S, Wei K H. Macromolecules, 2010, 43(1):428-432  doi: 10.1021/ma901895d

    21. [21]

      Alam M M, Tonzola C J, Jenekhe S A. Macromolecules, 2003, 36(17):6577-6587  doi: 10.1021/ma0346299

    22. [22]

      Sepe A, Rong Z X, Sommer M, Vaynzof Y, Sheng X Y, Muller-BuSChbaum P, Smilgies D M, Tan Z K, Yang L, Friend R H, Steiner U, Huttner S. Energy Environ Sci, 2014, 7(5):1725-1736

    23. [23]

      Ermi B D, Karim A, Douglas J F. J Polym Sci, Part B:Polym Phys, 1998, 36(1):191-200  doi: 10.1002/(ISSN)1099-0488

    24. [24]

      Willemse R C, de Boer A P, van Dam J, Gotsis A D. Polymer, 1999, 40(4):827-834  doi: 10.1016/S0032-3861(98)00307-3

    25. [25]

      Zhou K, Liu J G, Li M G, Yu X H, Xing R B, Han Y C. J Phys Chem C, 2015, 119(4):1729-1736
       

    26. [26]

      Zhou K, Liu J G, Zhang R, Zhao Q Q, Cao X X, Yu X H, Xing R B, Han Y C. Polymer, 2016, 86:105-112  doi: 10.1016/j.polymer.2016.01.062

    27. [27]

      Liu J G, Shao S Y, Wang H F, Zhao K, Xue L J, Gao X, Xie Z Y, Han Y C. Org Electron, 2010, 11(5):775-783  doi: 10.1016/j.orgel.2010.01.017

    28. [28]

      Veenstra S C, Loos J, Kroon J M. Prog Photovoltaics, 2007, 15(8):727-740  doi: 10.1002/(ISSN)1099-159X

    29. [29]

      Gu X D, Yan H P, Kurosawa T, Schroeder B C, Gu K L, Zhou Y, To J W F, Oosterhout S D, Savikhin V, Molina-Lopez F, Tassone C J, Mannsfeld S C B, Wang C, Toney M F, Bao Z A. Adv Energy Mater, 2016, 6(22):225-237

    30. [30]

      Kang H, Uddin M A, Lee C, Kim K H, Nguyen T L, Lee W, Li Y, Wang C, Woo H Y, Kim B J. J Am Chem Soc, 2015, 137(6):2359-2365  doi: 10.1021/ja5123182

    31. [31]

      Moore J R, Albert-Seifried S, Rao A, Massip S, Watts B, Morgan D J, Friend R H, McNeill C R, Sirringhaus H. Adv Energy Mater, 2011, 1(2):230-240  doi: 10.1002/aenm.201000035

    32. [32]

      Lombeck F, Sepe A, Thomann R, Friend R H, Sommer M. ACS Nano, 2016, 10(8):8087-8096  doi: 10.1021/acsnano.6b04244

    33. [33]

      Palermo E F, Darling S B, McNeil A J. J Mater Chem C, 2014, 2(17):3401-3406
       

    34. [34]

      Slota J E, Elmalem E, Tu G L, Watts B, Fang J F, Oberhumer P M, Friend R H, Huck W T S. Macromolecules, 2012, 45(3):1468-1475  doi: 10.1021/ma201523m

    35. [35]

      Mulherin R C, Jung S, Huettner S, Johnson K, Kohn P, Sommer M, Allard S, Scherf U, Greenham N C. Nano Lett, 2011, 11(11):4846-4851  doi: 10.1021/nl202691n

    36. [36]

      Cheng P, Ye L, Zhao X G, Hou J H, Li Y F, Zhan X W. Energy Environ Sci, 2014, 7(4):1351-1356
       

    37. [37]

      Hwang Y J, Earmme T, Courtright B A E, Eberle F N, Jenekhe S A. J Am Chem Soc, 2015, 137(13):4424-4434  doi: 10.1021/ja513260w

    38. [38]

      Li Z J, Xu X F, Zhang W, Meng X Y, Ma W, Yartsev A, Inganas O, Andersson M R, Janssen R A J, Wang E G. J Am Chem Soc, 2016, 138(34):10935-10944  doi: 10.1021/jacs.6b04822

    39. [39]

      Zhou K, Liu J G, Li M G, Yu X H, Xing R B, Han Y C. J Polym Sci, Part B:Polym Phys, 2015, 53(4):288-296  doi: 10.1002/polb.v53.4

    40. [40]

      Mori D, Benten H, Okada I, Ohkita H, Ito S. Adv Energy Mater, 2014, 4(3):6-12
       

    41. [41]

      Ma Y, Chen Y H, Mei A, Qiao M T, Hou C P, Zhang H P, Zhang Q Y. Chem-Asian J, 2016, 11(1):93-101  doi: 10.1002/asia.v11.1

    42. [42]

      Xiao L G, Liu C, Gao K, Yan Y J, Peng J B, Cao Y, Peng X B. RSC Adv, 2015, 5(112):92312-92317  doi: 10.1039/C5RA19054A

    43. [43]

      Liu J G, Chen L, Gao B R, Cao X X, Han Y C, Xie Z Y, Wang L X. J Mater Chem A, 2013, 1(20):6216-6225  doi: 10.1039/c3ta10629b

    44. [44]

      Yang C, Orfino F P, Holdcroft S. Macromolecules, 1996, 29(20):6510-6517  doi: 10.1021/ma9604799

    45. [45]

      Sung L, Douglas J F, Han C C, Karim A. J Polym Sci, Part B:Polym Phys, 2003, 41(14):1697-1700  doi: 10.1002/(ISSN)1099-0488

    46. [46]

      Zhang R, Yang H, Zhou K, Zhang J D, Liu J G, Yu X H, Xing R B, Han Y C. J Polym Sci, Part B:Polym Phys, 2016, 54(18):1811-1819  doi: 10.1002/polb.v54.18

    47. [47]

      Liu J G, Sun Y, Zheng L D, Geng Y H, Han Y C. Polymer, 2013, 54(1):423-430  doi: 10.1016/j.polymer.2012.11.011

    48. [48]

      Mori D, Benten H, Okada I, Ohkita H, Ito S. Energy Environ Sci, 2014, 7(9):2939——2943
       

    49. [49]

      Earmme T, Hwang Y J, Murari N M, Subramaniyan S, Jenekhe S A. J Am Chem Soc, 2013, 135(40):14960-14963  doi: 10.1021/ja4085429

    50. [50]

      He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J, Cao Y. Adv Mater, 2011, 23(40):4636-4643  doi: 10.1002/adma.201103006

    51. [51]

      Brabec C J, Gowrisanker S, Halls J J M, Laird D, Jia S J, Williams S P. Adv Mater, 2010, 22(34):3839-3856  doi: 10.1002/adma.200903697

    52. [52]

      Nardes A M, Ferguson A J, Wolfer P, Gui K, Burn P L, Meredith P, Kopidakis N. Chem Phys Chem, 2014, 15(8):1539-1549  doi: 10.1002/cphc.201301022

    53. [53]

      Gregg B A. J Phys Chem Lett, 2011, 2(24):3013-3015  doi: 10.1021/jz2012403

    54. [54]

      Verlaak S, Beljonne D, Cheyns D, Rolin C, Linares M, Castet F, Cornil J, Heremans P. Adv Funct Mater, 2009, 19(23):3809-3814  doi: 10.1002/adfm.v19:23

    55. [55]

      Ye L, Jiao X C, Zhou M, Zhang S Q, Yao H F, Zhao W C, Xia A D, Ade H, Hou J H. Adv Mater, 2015, 27(39):6046-6054  doi: 10.1002/adma.201503218

    56. [56]

      Osaka I, Takimiya K. Polymer, 2015, 59:A1-A15  doi: 10.1016/j.polymer.2014.12.066

    57. [57]

      Jung J W, Liu F, Russell T P, Jo W H. Energy Environ Sci, 2013, 6(11):3301-3307
       

    58. [58]

      Jung J, Lee W, Lee C, Ahn H, Kim B J. Adv Energy Mater, 2016, 6(15):504-514
       

    59. [59]

      Zhang X R, Richter L J, DeLongchamp D M, Kline R J, Hammond M R, McCullOCh I, Heeney M, Ashraf R S, Smith J N, Anthopoulos T D, SChroeder B, Geerts Y H, FiSCher D A, Toney M F. J Am Chem Soc, 2011, 133(38):15073-15084

    60. [60]

      Subramaniyan S, Xin H, Kim F S, Shoaee S, Durrant J R, Jenekhe S A. Adv Energy Mater, 2011, 1(5):854-860  doi: 10.1002/aenm.v1.5

    61. [61]

      Wu Y, Li Z J, Ma W, Huang Y, Huo L J, Guo X, Zhang M J, Ade H, Hou J H. Adv Mater, 2013, 25(25):3449-3455  doi: 10.1002/adma.v25.25

    62. [62]

      Li M M, An C B, Marszalek T, Baumgarten M, Yan H, Mullen K, Pisula W. Adv Mater, 2016, 28(42):9430-9438  doi: 10.1002/adma.201602660

    63. [63]

      Kim D H, Jang Y, Park Y D, Cho K. Langmuir, 2005, 21(8):3203-3206
       

    64. [64]

      Zhang R, Yang H, Zhou K, Zhang J D, Yu X H, Liu J G, Han Y C. Macromolecules, 2016, 49(18):6987-6996  doi: 10.1021/acs.macromol.6b01526

    65. [65]

      Zhou K, Zhang R, Liu J G, Li M G, Yu X H, Xing R B, Han Y C. ACS Appl Mater Interfaces, 2015, 7(45):25352-25361  doi: 10.1021/acsami.5b07605

    66. [66]

      Zuo L J, Hu X L, Ye T, Andersen T R, Li H Y, Shi M M, Xu M S, Ling J, Zheng Q, Xu J T, Bundgaard E, Krebs F C, Chen H Z. J Phys Chem C, 2012, 116(32):16893-16900  doi: 10.1021/jp3049444

    67. [67]

      Zhao K, Xue L, Liu J, Gao X, Wu S, Han Y, Geng Y. Langmuir, 2010, 26(1):471-477  doi: 10.1021/la903381f

    68. [68]

      Liu J, Sun Y, Gao X, Xing R, Zheng L, Wu S, Geng Y, Han Y. Langmuir, 2011, 27(7):4212-4219
       

    69. [69]

      Chen L, Chi S J, Zhao K F, Liu J G, Yu X H, Han Y C. Polymer, 2016, 104:123-129  doi: 10.1016/j.polymer.2016.10.005

    70. [70]

      Chen L, Wang H Y, Liu J G, Xing R B, Yu X H, Han Y C. J Polym Sci, Part B:Polym Phys, 2016, 54(8):838-847
       

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    9. [9]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    14. [14]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    18. [18]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    19. [19]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

Metrics
  • PDF Downloads(0)
  • Abstract views(86)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return