Citation: Sun Jing, Li Zhi-bo. Studies on Polypeptoid and Its Structure-Property Relationship[J]. Acta Polymerica Sinica, ;2018, (1): 1-8. doi: 10.11777/j.issn1000-3304.2018.17220 shu

Studies on Polypeptoid and Its Structure-Property Relationship

  • Polypeptoids, also referred as poly(N-substituted glycines), are an emerging class of bioinspired polymers with excellent biocompatibility and potent biological activities. The polypeptoid has identical backbone compared to that of the polypeptide. Unlike the polypeptide, the side chain of the polypeptoid is covalently attached to the amide nitrogen instead of α-carbon in the main chain. It thus removes inter-and intra-chain hydrogen bonding in the backbone and also eliminates the main chain chirality, which results in substantial backbone flexibility. This allows for good solubility in many common solvents and accessible thermal processibility. In addition, the properties of polypeptoids are dominated by the side chain identity and physical-chemical properties, which enables the polypeptoids highly designable. By careful engineering and design of the side-chain structure, the secondary conformation, thermal property and degradability of the polypeptoids can be finely tuned. All these advantages make polypeptoids promising candidates for potential applications in nanoscience and biomedicine. The polypeptoid can be prepared by two distinct synthetic techniques that offer access to two material sub-classes. A two-step submonomer synthetic method that excludes main chain protecting groups has been developed based on the solid-phase peptide synthesis (SPPS). This approach enables precision structural control and near absolute monodispersity of the polymers. A classical polymerization approach can achieve high molecular weight of the polypeptoids. The combination of solid-phase synthesis with polymerization technique offers great opportunities to tailor structural design and to systematically investigate the relationship between structure and property of the polymers. It enables the preparation of next generation of bio-inspired polymeric materials with advanced functional properties. In this article, we discuss recent developments of the microphase separation and self-assembling behavior of the polypeptoids. We focus on the approach to systematically study the relationship of chemical structure and self-assembly behavior by finely tuning the side-chain structure of the polypeptoids, and to further obtain the novel biopolymers with extraordinary microphase separation behavior and self-assembling nanostructures. The potential applications in biomedicine and energy storage are also discussed.
  • 加载中
    1. [1]

      Discher B M, Won Y Y, Ege D S, Lee J, Bates F S, Discher D E. Science, 1999, 284:1143-1145  doi: 10.1126/science.284.5417.1143

    2. [2]

      Matsuzawa M, Kobayashi K, Sugioka K, Knoll W. J Colloid Interface Sci, 1998, 202:213-221  doi: 10.1006/jcis.1998.5409

    3. [3]

      Krause A, Cowles E A, Gronowicz G. J Biomed Mater Res, 2000, 52:738-747  doi: 10.1002/(ISSN)1097-4636

    4. [4]

      Deming T J. Adv Drug Deliver Rev, 2002, 54:1145-1155  doi: 10.1016/S0169-409X(02)00062-5

    5. [5]

      Rsler A, Vandermeulen G W, Klok H A. Adv Drug Deliver Rev, 2001, 53:95-108  doi: 10.1016/S0169-409X(01)00222-8

    6. [6]

      Lee Y, Fukushima S, Bae Y, Hiki S, Ishii T, Kataoka K. J Am Chem Soc, 2007, 129:5362-5362  doi: 10.1021/ja071090b

    7. [7]

      Kukula H, Schlaad H, Antonietti M, Forster S. J Am Chem Soc, 2002, 124:1658-1663  doi: 10.1021/ja012091l

    8. [8]

      Rathore O, Sogah D Y. Macromolecules, 2001, 34:1477-1486  doi: 10.1021/ma001553x

    9. [9]

      Rodriguez Hernandez J, Lecommandoux S. J Am Chem Soc, 2005, 127:2026-2027  doi: 10.1021/ja043920g

    10. [10]

      Fowler S A, Luechapanichkul R, Blackwell H E. J Org Chem, 2009, 74:1440-1449  doi: 10.1021/jo8023363

    11. [11]

      Kirshenbaum K, Barron A E, Goldsmith R A, Armand P, Bradley E K, Truong K T V, DillK A, Cohen F E, Zuckermann R N. Proc Natl Acad Sci, USA, 1998, 95:4303-4306  doi: 10.1073/pnas.95.8.4303

    12. [12]

      Sun J, Zuckermann R N. ACS Nano, 2013, 7:4715-4732  doi: 10.1021/nn4015714

    13. [13]

      Reddy M M, Wilson R, Wilson J, Connell S, Gocke A, Hynan L, German D, Kodadek T. Cell, 2011, 144:132-142  doi: 10.1016/j.cell.2010.11.054

    14. [14]

      Kirshenbaum K, Zuckermann R N, Dill K A. Curr Opin Struc Biol, 1999, 9:530 -535  doi: 10.1016/S0959-440X(99)80075-X

    15. [15]

      Zuckermann R N. Peptoid Origins Pept Sci, 2011, 96:545-555  doi: 10.1002/bip.21573

    16. [16]

      Zuckermann R N, Kodadek T. Curr Opin Mo Ther, 2009, 11:299-307
       

    17. [17]

      Zhang D H, Lahasky S H, Guo L, Lee C U, Lavan M. Macromolecules, 2012, 45:5833-5841  doi: 10.1021/ma202319g

    18. [18]

      Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Chem Rev, 2016, 116:1753  doi: 10.1021/acs.chemrev.5b00201

    19. [19]

      Knight A S, Zhou E Y, Francis M B, Zuckermann R N. Adv Mater, 2015, 27:5665  doi: 10.1002/adma.v27.38

    20. [20]

      Simon R J, Kania R S, Zuckermann R N, Huebner V D, Jewell D A, Banville S, Ng S, Wang L, Rosenberg S, Marlowe C K. Proc Natl Acad Sci, USA, 1992, 89:9367 -9370  doi: 10.1073/pnas.89.20.9367

    21. [21]

      Kricheldorf H R, von Lossow C, Schwarz G. Macromol Chem Phys, 2004, 205:918-924  doi: 10.1002/(ISSN)1521-3935

    22. [22]

      Kricheldorf H R, von Lossow C, Schwarz G. J Polym Sci, Part B:Polym Phys, 2005, 43:5690-5698  doi: 10.1002/(ISSN)1099-0518

    23. [23]

      Guo L, Zhang D. J Am Chem Soc, 2009, 131:18072-18074  doi: 10.1021/ja907380d

    24. [24]

      Robinson J W, Schlaad H. Chem Commun, 2012, 48:7835-7838  doi: 10.1039/c2cc33881e

    25. [25]

      Robinson J W, Secker C, Weidner S, Schlaad H. Macromolecules, 2013, 46:580-587  doi: 10.1021/ma302412v

    26. [26]

      Tao X F, Deng C, Ling J. Macromol Rapid Commun, 2014, 35:875-881  doi: 10.1002/marc.v35.9

    27. [27]

      Bates F S. Science, 1991, 251:898-905  doi: 10.1126/science.251.4996.898

    28. [28]

      Rosales A M, McCulloch B L, Zuckermann R N, Segalman R A. Macromolecules, 2012, 45:6027-6035  doi: 10.1021/ma300625b

    29. [29]

      Sun J, Teran A A, Liao X, Balsara N P, Zuckermann R N. J Am Chem Soc, 2013, 135:14119-14124  doi: 10.1021/ja404233d

    30. [30]

      Sun J, Teran A A, Liao X, Balsara N P, Zuckermann R N. J Am Chem Soc, 2014, 136:2070-2077  doi: 10.1021/ja412123y

    31. [31]

      Jain S, Bates F S. Science, 2004, 300:460-464
       

    32. [32]

      Ni Y X, Sun J, Wei Y H, Fu X H, Zhu C H, Li Z B. Biomacromolecules, 2017, 18: 3367-337  doi: 10.1021/acs.biomac.7b01014

    33. [33]

      Nam K T, Shelby S A, Choi P H, Marciel A B, Chen R, Tan L, Chu T K, Mesch R A, Lee B C, Connolly M D. Nat Mater, 2010, 9:454-460  doi: 10.1038/nmat2742

    34. [34]

      Sanii B, Kudirka R, Cho A, Venkateswaran N, Olivier G K, Olson A M, Tran H, Harada R M, Tan L, Zuckermann R N. J Am Chem Soc, 2011, 133:20808-20815  doi: 10.1021/ja206199d

    35. [35]

      Olivier G K, Cho A, Sanii B, Connolly M D, Tran H, Zuckermann R N. ACS Nano, 2015, 7:9276
       

    36. [36]

      Murnen H K, Rosales A M, Jaworski J N, Segalman R A, Zuckermann R N. J Am Chem Soc, 2010, 132:16112-16119  doi: 10.1021/ja106340f

    37. [37]

      Lahasky S H, Hu X, Zhang D. ACS Macro Lett, 2012, 1:580-584  doi: 10.1021/mz300017y

    38. [38]

      Sun J, Jiang X, Lund R, Downing K H, Balsara N P, Zuckermann R N. Proc Natl Acad Sci, USA, 2016, 113:201517169

    39. [39]

      Kidchob T, Kimura S, Imanishi Y. J Control Release, 1998, 50:205-214  doi: 10.1016/S0168-3659(97)00135-1

    40. [40]

      Heller P, Birke A, Huesmann D, Weber B, Fischer K, Reske-Kunz A, Bros M, Barz M. Macromol Biosci, 2014, 14:1380-1395  doi: 10.1002/mabi.201400167

    41. [41]

      Sun J, JiangX, Siegmund A, Downing K H, Balsara N P, Zuckermann R N. Macromolecules, 2016, 49:3083-3090  doi: 10.1021/acs.macromol.6b00353

    42. [42]

      Sun J, Stone G M, Balsara N P, Zuckermann R N. Macromolecules, 2012, 45:5151-5156  doi: 10.1021/ma300775b

    43. [43]

      Sun J, Liao X, Minor A M, Balsara N P, Zuckermann R N. J Am Chem Soc, 2014, 136:14990  doi: 10.1021/ja5080689

  • 加载中
    1. [1]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    10. [10]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    11. [11]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    12. [12]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    13. [13]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    14. [14]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    18. [18]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(0)
  • Abstract views(140)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return