Citation: Wang You-zhi, Gao Jie, Yang Zhi-mou. Short Peptide-based Hydrogels: Mild Preparation Methods and Their Application as Vaccine Adjuvant[J]. Acta Polymerica Sinica, ;2018, (1): 9-20. doi: 10.11777/j.issn1000-3304.2018.17199 shu

Short Peptide-based Hydrogels: Mild Preparation Methods and Their Application as Vaccine Adjuvant

  • Corresponding author: Yang Zhi-mou, yangzm@nankai.edu.cn
  • Received Date: 25 July 2017
    Revised Date: 8 August 2017

  • Self-assembly prevails in nature, and has been used as a powerful strategy for construction of functional materials. Small molecular hydrogel is composed of nanofibers formed by self-assembly of small molecules (molecular weight usually < 2000) in aqueous solution. Among them, hydrogels formed by the self-assembly of short peptides through noncovalent interaction have attracted intensive interests due to their ease of design, biocompatibility and biodegradability, as well as fast response to external environment. Several classical methods have been developed to construct peptide-based hydrogels, including heating-cooling cycle, pH value adjustment, ionic strength change, solvent transform and sonication induction. However, these methods were not suitable for the encapsulation of bioactive components such as proteins and cells. Therefore, more biocompatible methods were needed for the biomedical application of peptide-based hydrogels. This paper summarizes our recent work on the development of biocompatible and mild preparation methods for the peptide-based hydrogels, including enzymatic triggeration, disulfide bond cleavage, redox control and specific protein-peptide interaction inducement. These strategies showed benefits for biomedical applications of short peptide-based hydrogels, including drug delivery, analyte detection, cancer inhibition and regenerative medicine. Recently, pioneering works demonstrated that self-assembled peptides could be used as self-adjuvated vaccines through covalent conjugation of peptide or protein antigens. We found several peptide-based hydrogels that could elicit strong immune responses by simply mixing them with antigens, which showed distinct advantages over other commercially available immune adjuvants. We summarize in this review a simple strategy to deliver subunit vaccines by physically mixing antigens including DNA, protein, and attenuated cells with nanofibers of self-assembling peptides. Vaccines based on self-assembling peptides can raise stronger antibody productions, which is useful for protective vaccine development and antibody production. Besides, several vaccines capable of eliciting strong CD8+ T cell response are also introduced, and they are promising for the development of vaccines to treat important diseases such as cancers and HIV. Challenges remained are also mentioned in the last section of this review. Overall, self-assembling peptides are very useful for antibody production and the development of novel vaccines to treat important diseases.
  • 加载中
    1. [1]

      Tang Z H, He C L, Tian H Y, Ding J X, Hsiao B S, Chu B, Chen X S. Prog Polym Sci, 2016, 60:86-128  doi: 10.1016/j.progpolymsci.2016.05.005

    2. [2]

      Fang F, Gong C Y, Qian Z Y, Zhang X N, Gou M L, You C, Zhou L X, Liu J G, Zhang Y, Guo G, Gu Y C, Luo F, Chen L J, Zhao X, Wei Y Q. ACS Nano, 2009, 3(12):4080-4088  doi: 10.1021/nn900785b

    3. [3]

      Gao Y, Song J, Li S, Elowsky C, Zhou Y, Ducharme S, Chen Y M, Zhou Q, Tan L. Nat Commun, 2016, 7:12316  doi: 10.1038/ncomms12316

    4. [4]

      Bao R, Tan B Y, Liang S, Zhang N, Wang W, Liu W G. Biomaterials, 2017, 122:63-71  doi: 10.1016/j.biomaterials.2017.01.012

    5. [5]

      Huang J H, Zhao L, Wang T, Sun W X, Tong Z. ACS Appl Mater Interfaces, 2016, 8(19):12384-12392  doi: 10.1021/acsami.6b00867

    6. [6]

      Xu Jiangfei, Zhang Xi. Acta Polymerica Sinica, 2017, (1):3-8
       

    7. [7]

      Wu D C, Loh X J, Wu Y L, Lay C L, Liu Y. J Am Chem Soc, 2010, 132(43):15140-15143  doi: 10.1021/ja106639c

    8. [8]

      Shao Y, Jia H, Cao T, Liu D. Acc Chem Res, 2017, 50(4):659-668  doi: 10.1021/acs.accounts.6b00524

    9. [9]

      Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv Mater, 2003, 15(14):1155-1158  doi: 10.1002/adma.200304907

    10. [10]

      Wang Q, Mynar J L, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T. Nature, 2010, 463(7279):339-343  doi: 10.1038/nature08693

    11. [11]

      Kramer J R, Deming T J. J Am Chem Soc, 2014, 136(15):5547-5550  doi: 10.1021/ja500372u

    12. [12]

      Miyamae K, Nakahata M, Takashima Y, Harada A. Angew Chem Int Ed Engl, 2015, 54(31):8984-8987  doi: 10.1002/anie.201502957

    13. [13]

      Aida T, Meijer E W, Stupp S I. Science, 2012, 335(6070):813-817  doi: 10.1126/science.1205962

    14. [14]

      Estroff L A, Hamilton A D. Chem Rev, 2004, 104(3):1201-1217  doi: 10.1021/cr0302049

    15. [15]

      Shigemitsu H, Hamachi I. Acc Chem Res, 2017, 50(4):740-750  doi: 10.1021/acs.accounts.7b00070

    16. [16]

      Weingarten A S, Kazantsev R V, Palmer L C, McClendon M, Koltonow A R, SamuelAmanda P S, Kiebala D J, Wasielewski M R, Stupp S I. Nat Chem, 2014, 6(11):964-970  doi: 10.1038/nchem.2075

    17. [17]

      Roy S, Banerjee A. Soft Matter, 2011, 7(11):5300-5308  doi: 10.1039/c1sm05034f

    18. [18]

      Chen C S, Xu X D, Li S Y, Zhuo R X, Zhang X Z. Nanoscale, 2013, 5(14):6270-6274  doi: 10.1039/c3nr01967e

    19. [19]

      Liu Y, Wang T, Huan Y, Li Z, He G, Liu M. Adv Mater, 2013, 25(41):5875-5879  doi: 10.1002/adma.201302345

    20. [20]

      Zhang L, Qin L, Wang X, Cao H, Liu M. Adv Mater, 2014, 26(40):6959-6964  doi: 10.1002/adma.v26.40

    21. [21]

      Zhao X, Zhang S. Chem Soc Rev, 2006, 35(11):1105-1110  doi: 10.1039/b511336a

    22. [22]

      Ulijn R V, Smith A M. Chem Soc Rev, 2008, 37(4):664-675  doi: 10.1039/b609047h

    23. [23]

      Adler-Abramovich L, Gazit E. Chem Soc Rev, 2014, 43(20):6881-6893  doi: 10.1039/C4CS00164H

    24. [24]

      Chen S, Lei Q, Li S Y, Qin S Y, Jia H Z, Cheng Y J, Zhang X Z. Biomaterials, 2016, 92:25-35  doi: 10.1016/j.biomaterials.2016.03.031

    25. [25]

      Soukasene S, Toft D J, Moyer T J, Lu H, Lee H K, Standley S M, Cryns V L, Stupp S I. ACS Nano, 2011, 5(11):9113-9121  doi: 10.1021/nn203343z

    26. [26]

      Cai Y, Shen H, Zhan J, Lin M, Dai L, Ren C, Shi Y, Liu J, Gao J, Yang Z. J Am Chem Soc, 2017, 139(8):2876 -2879  doi: 10.1021/jacs.6b12322

    27. [27]

      Xu X D, Liang L, Chen C S, Lu B, Wang N L, Jiang F G, Zhang X Z, Zhuo R X. ACS Appl Mater Interfaces, 2010, 2(9):2663-2671  doi: 10.1021/am100484c

    28. [28]

      Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547):1684-1688  doi: 10.1126/science.1063187

    29. [29]

      Wang H, Feng Z, Wang Y, Zhou R, Yang Z, Xu B. J Am Chem Soc, 2016, 138(49):16046-16055  doi: 10.1021/jacs.6b09783

    30. [30]

      Zou Q, Abbas M, Zhao L, Li S, Shen G, Yan X. J Am Chem Soc, 2017, 139(5):1921-1927  doi: 10.1021/jacs.6b11382

    31. [31]

      Liu K, Xing R, Zou Q, Ma G, Möhwald H, Yan X. Angew Chem Int Ed Engl, 2016, 55(9):3036-3039  doi: 10.1002/anie.201509810

    32. [32]

      Ren C, Wang H, Mao D, Zhang X, Fengzhao Q, Shi Y, Ding D, Kong D, Wang L, Yang Z. Angew Chem Int Ed Engl, 2015, 54(16):4823-4827  doi: 10.1002/anie.201411833

    33. [33]

      Xu T, Liang C, Ji S, Ding D, Kong D, Wang L, Yang Z. Anal Chem, 2016, 88(14):7318-7323  doi: 10.1021/acs.analchem.6b01660

    34. [34]

      Chen C S, Xu X D, Wang Y, Yang J, Jia H Z, Cheng H, Chu C C, Zhuo R X, Zhang X Z. Small, 2013, 9(6):920-926  doi: 10.1002/smll.201201928

    35. [35]

      Rudra J S, Tian Y F, Jung J P, Collier J H. Proc. Natl Acad Sci U S A, 2010, 107(2):622-627
       

    36. [36]

      Hudalla G A, Sun T, Gasiorowski J Z, Han H, Tian Y F, Chong A S, Collier J H. Nat Mater, 2014, 13(8):829-836  doi: 10.1038/nmat3998

    37. [37]

      Salick D A, Kretsinger J K, Pochan D J, Schneider J P. J Am Chem Soc, 2007, 129(47):14793-14799  doi: 10.1021/ja076300z

    38. [38]

      Maity I, Rasale D B, Das A K. Soft Matter, 2012, 8(19):5301-5308  doi: 10.1039/c2sm25126d

    39. [39]

      Yang Z, Liang G, Xu B. Acc Chem Res, 2008, 41(2):315-326  doi: 10.1021/ar7001914

    40. [40]

      Matsumoto S, Yamaguchi S, Wada A, Matsui T, Ikeda M, Hamachi I. Chem Commun, 2008, 13):1545-1547
       

    41. [41]

      Muraoka T, Koh C Y, Cui H, Stupp S I. Angew Chem Int Ed Engl, 2009, 121(32):6060-6063  doi: 10.1002/ange.200901524

    42. [42]

      Qiu Z, Yu H, Li J, Wang Y, Zhang Y. Chem Commun, 2009, 23:3342-3344
       

    43. [43]

      Yang Z, Gu H, Du J, Gao J, Zhang B, Zhang X, Xu B. Tetrahedron, 2007, 63(31):7349-7357  doi: 10.1016/j.tet.2007.02.009

    44. [44]

      Zhang Y, Gu H, Yang Z, Xu B. J Am Chem Soc, 2003, 125(45):13680-13681  doi: 10.1021/ja036817k

    45. [45]

      Daftarian P, Mansour M, Benoit A C, Pohajdak B, Hoskin D W, Brown R G, Kast W M. Vaccine, 2006, 24(24):5235-5244  doi: 10.1016/j.vaccine.2006.03.079

    46. [46]

      Hubbell J A, Thomas S N, Swartz M A. Nature, 2009, 462(7272):449-460  doi: 10.1038/nature08604

    47. [47]

      Ishii K J, Akira S. J Clin Immunol, 2007, 27(4):363-371  doi: 10.1007/s10875-007-9087-x

    48. [48]

      Luo Z, Li P, Deng J, Gao N, Zhang Y, Pan H, Liu L, Wang C, Cai L, Ma Y. J Control Release, 2013, 170(2):259-267  doi: 10.1016/j.jconrel.2013.05.027

    49. [49]

      McSorley S J, Ehst B D, Yu Y, Gewirtz A T. J Immunol, 2002, 169(7):3914-3919  doi: 10.4049/jimmunol.169.7.3914

    50. [50]

      Petersen L K, Ramer-Tait A E, Broderick S R, Kong C-S, Ulery B D, Rajan K, Wannemuehler M J, Narasimhan B. Biomaterials, 2011, 32(28):6815-6822  doi: 10.1016/j.biomaterials.2011.05.063

    51. [51]

      Wu Y, Wei W, Zhou M, Wang Y, Wu J, Ma G, Su Z. Biomaterials, 2012, 33(7):2351-2360  doi: 10.1016/j.biomaterials.2011.11.068

    52. [52]

      Black M, Trent A, Kostenko Y, Lee J S, Olive C, Tirrell M. Adv Mater, 2012, 24(28):3845-3849  doi: 10.1002/adma.v24.28

    53. [53]

      Gao J, Wang H, Wang L, Wang J, Kong D, Yang Z. J Am Chem Soc, 2009, 131(32):11286-11287  doi: 10.1021/ja9042142

    54. [54]

      Wang H, Yang C, Wang L, Kong D, Zhang Y, Yang Z. Chem Commun, 2011, 47(15):4439-4441  doi: 10.1039/c1cc10506j

    55. [55]

      Wang H, Yang Z. Nanoscale, 2012, 4(17):5259-5267  doi: 10.1039/c2nr31149f

    56. [56]

      Wang H, Yang Z. Soft Matter, 2012, 8(8):2344-2347  doi: 10.1039/C2SM06923G

    57. [57]

      Ren C, Song Z, Zheng W, Chen X, Wang L, Kong D, Yang Z. Chem Commun, 2011, 47(5):1619-1621  doi: 10.1039/C0CC04135A

    58. [58]

      Cai Y, Shi Y, Wang H, Wang J, Ding D, Wang L, Yang Z. Anal Chem, 2014, 86(4):2193-2199  doi: 10.1021/ac4038653

    59. [59]

      Yang C, Wang Z, Ou C, Chen M, Wang L, Yang Z. Chem Commun, 2014, 50(66):9413-9415  doi: 10.1039/C4CC03139C

    60. [60]

      Ma N, Li Y, Xu H, Wang Z, Zhang X. J Am Chem Soc, 2010, 132(2):442-443  doi: 10.1021/ja908124g

    61. [61]

      Cao W, Zhang X, Miao X, Yang Z, Xu H. Angew Chem Int Ed Engl, 2013, 52(24):6233-6237  doi: 10.1002/anie.201300662

    62. [62]

      Miao X, Cao W, Zheng W, Wang J, Zhang X, Gao J, Yang C, Kong D, Xu H, Wang L, Yang Z. Angew Chem Int Ed Engl, 2013, 52(30):7781-7785  doi: 10.1002/anie.v52.30

    63. [63]

      Zhang X, Chu X, Wang L, Wang H, Liang G, Zhang J, Long J, Yang Z. Angew Chem Int Ed Engl, 2012, 51(18):4388-4392  doi: 10.1002/anie.201108612

    64. [64]

      Wang H, Han A, Cai Y, Xie Y, Zhou H, Long J, Yang Z. Chem Commun, 2013, 49(67):7448-7450  doi: 10.1039/c3cc43711f

    65. [65]

      Zhang X, Zhou H, Xie Y, Ren C, Ding D, Long J, Yang Z. Adv Healthc Mater, 2014, 3(11):1804-1811  doi: 10.1002/adhm.v3.11

    66. [66]

      Tian Y, Wang H, Liu Y, Mao L, Chen W, Zhu Z, Liu W, Zheng W, Zhao Y, Kong D, Yang Z, Zhang W, Shao Y, Jiang X. Nano Lett, 2014, 14(3):1439-1445  doi: 10.1021/nl404560v

    67. [67]

      Wang H, Luo Z, Wang Y, He T, Yang C, Ren C, Ma L, Gong C, Li X, Yang Z. Adv Funct Mater, 2016, 26(11):1822-1829  doi: 10.1002/adfm.v26.11

    68. [68]

      Luo Z, Wu Q, Yang C, Wang H, He T, Wang Y, Wang Z, Chen H, Li X, Gong C, Yang Z. Adv Mater, 2017, 29(5):1601776  doi: 10.1002/adma.201601776

    69. [69]

      Yang C, Ren X, Ding D, Wang L, Yang Z. Nanoscale, 2016, 8(20):10768-10773  doi: 10.1039/C6NR02330D

    70. [70]

      Wang J, Liu K, Xing R, Yan X. Chem Soc Rev, 2016, 45(20):5589-5604  doi: 10.1039/C6CS00176A

    71. [71]

      Boekhoven J, Poolman J M, Maity C, Li F, van der Mee L, Minkenberg C B, Mendes E, van EschJan H, Eelkema R. Nat Chem, 2013, 5(5):433-437  doi: 10.1038/nchem.1617

    72. [72]

      Hirst A R, Roy S, Arora M, Das A K, Hodson N, Murray P, Marshall S, Javid N, Sefcik J, Boekhoven J, van Esch J H, Santabarbara S, Hunt N T, Ulijn R V. Nat Chem, 2010, 2(12):1089-1094  doi: 10.1038/nchem.861

    73. [73]

      Levin A, Mason T O, Adler-Abramovich L, Buell A K, Meisl G, Galvagnion C, Bram Y, Stratford S A, Dobson C M, Knowles T P J, Gazit E. Nat Commun, 2014, 5:5219  doi: 10.1038/ncomms6219

    74. [74]

      Lock L L, Reyes C D, Zhang P, Cui H. J Am Chem Soc, 2016, 138(10):3533-3540  doi: 10.1021/jacs.6b00073

    75. [75]

      Tantakitti F, Boekhoven J, Wang X, Kazantsev R V, Yu T, Li J, Zhuang E, Zandi R, Ortony J H, Newcomb C J, Palmer L C, Shekhawat G S, de la Cruz M O, Schatz G C, Stupp S I. Nat Mater, 2016, 15(4):469-476  doi: 10.1038/nmat4538

    76. [76]

      van der Zwaag D, Pieters P A, Korevaar P A, Markvoort A J, Spiering A J H, de Greef T F A, Meijer E W. J Am Chem Soc, 2015, 137(39):12677-12688  doi: 10.1021/jacs.5b08138

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    5. [5]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    12. [12]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    16. [16]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

Metrics
  • PDF Downloads(0)
  • Abstract views(127)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return