Citation: Li Hua, Wu Xiao-fu, Hang Hao, Chen Yong-hong, Tong Hui, Wang Li-xiang. Water-dispersed Hyperbranched Conjugated Polymer Nanoparticles for Highly Sensitive Fluorescent Detection of Picric Acid[J]. Acta Polymerica Sinica, ;2018, (2): 248-256. doi: 10.11777/j.issn1000-3304.2018.17194 shu

Water-dispersed Hyperbranched Conjugated Polymer Nanoparticles for Highly Sensitive Fluorescent Detection of Picric Acid

  • Water-dispersed hyperbranched conjugated polymer nanoparticles (HCPN-QA) with quaternary ammonium salt as terminal groups were prepared by Suzuki polymerization in miniemulsion, followed by post-functionalization reaction, for highly sensitive and selective sensing of picric acid (PA) in aqueous solutions. By taking advantage of the positively charged quaternary ammonium salt terminal groups and hydrophobic cavities inside the hyperbranched core, bright blue emissive HCPN-QA can efficiently bind with PA in water by electrostatic attraction and hydrophobic encapsulation interaction, leading to highly efficient fluorescence quenching. The quenching constant of HCPN-QA was 6.36×107 L/mol, which was three orders higher than that of its organic solution-dispersed hyperbranched conjugated polymer nanoparticle analogue (HCPN-OMe). HCPN-QA was capable of sensing PA in water with a detection limit of 7.8×10-10 mol/L (0.18 μg/L), which was four orders of magnitude lower than that of HCPN-OMe (0.34 mg/L). Meanwhile, this value was also lower than the maximum permissible level (1 μg/L) for PA in drinking water set by World Health Organization (WHO). Moreover, by decreasing the amount of surfactants during the polymerization, nanoparticles with small diameter were obtained for further studying the relationship between particle size and the sensitivity for PA sensing. The fluorescent titration study indicated that particle size of HCPN-QA had little effect on the sensitivity for PA sensing. Furthermore, by combining electrostatic attraction and hydrophobic encapsulation interaction, HCPN-QA also showed much higher fluorescence quenching response to PA over other analytes, including 2, 4, 6-trinitrotoluene (TNT), 2, 4-dinitrotoluene (DNT), nitrobenzene, cyclotetramethylenetetranitramine (HMX), 1, 3, 5-trinitro-1, 3, 5-triazinane (RDX), nitromethane, ammonium nitrate, chlorobenzene, toluene and phenol in water. Especially, HCPN-QA showed nearly 60-fold higher quenching constant for PA than that of TNT, indicating that HCPN-QA had not only a high sensitivity, but also a good selectivity for PA sensing. In addition, contact mode detection was further performed using fluorescent paper strips based on HCPN-QA for naked eye detection of PA with a detection limit of 66 pg/mm2.
  • 加载中
    1. [1]

      Li T, Shao Y L, Zhang S T, Qin J C, Fan L, Liu L, Wang B D, Yang Z Y, Wang Y H. J Lumin, 2017, 181:345-351  doi: 10.1016/j.jlumin.2016.09.036

    2. [2]

      Wei W, Lu R J, Tang S Y, Liu X Y. J Mater Chem A, 2015, 3(8):4604-4611  doi: 10.1039/C4TA06828A

    3. [3]

      Shanmugaraju S, Dabadie C, Byrne K, Savyasachi A J, Umadevi D, Schmitt W, Kitchen JA, Gunnlaugsson T. Chem Sci, 2017, 8(2):1535-1546

    4. [4]

      Ewing R G, Atkinson D A, Eiceman G A, Ewing G J. Talanta, 2001, (54):515-529

    5. [5]

      Zhang Y, Ma X X, Zhang S C, Yang C H, Ouyang Z, Zhang X R. Analyst, 2009, 134(1):176-181  doi: 10.1039/B816230A

    6. [6]

      Luggar R D, Farquharson M J, Horrocks J A, Lacey R J. X-Ray Spectrometry, 1998, 27, 82-94

    7. [7]

      Huang J R, Wang L Y, Shi C C, Dai Y J, Gu C P, Liu J H. Sens Actuat B, 2014, (196):567-573

    8. [8]

      Tao A, Kim F, Hess C, Goldberger J, He R R, Sun Y G, Yang P D. Nano Lett, 2003, 3(9):1229-1233  doi: 10.1021/nl0344209

    9. [9]

      Shanmugaraju S, Mukherjee P S. Chemistry, 2015, 21(18):6656-6666  doi: 10.1002/chem.201406092

    10. [10]

      Liu T H, Zhao K R, Liu K, Ding L P, Yin S W, Fang Y. J Hazard Mater, 2013, (246-247):52-60

    11. [11]

      Xu Y Q, Li B H, Li W W, Zhao J, Sun S G, Pang Y. Chem Commun (Camb), 2013, 49(42):4764-4766  doi: 10.1039/c3cc41994k

    12. [12]

      Liu S G, Luo D, Li N, Zhang W, Lei J L, Li N B, Luo H Q. ACS Appl Mater Interfaces, 2016, 8(133):21700-21709

    13. [13]

      Ding L P, Bai Y M, Gao Y, Ren G J, Blanchard G J, Fang Y. Langmuir, 2014, 30(26):7645-7653  doi: 10.1021/la5011264

    14. [14]

      Zhou Q, Sawager T M. J Am Chem Soc, 1995, 117(50):12593-12602  doi: 10.1021/ja00155a023

    15. [15]

      Thomas S W, Joly G D, Swager T M. Chem Rev, 2007, 107(4):1339-1386  doi: 10.1021/cr0501339

    16. [16]

      Wu W B, Tang R L, Li Q Q, Li Z. Chem Soc Rev, 2015, 12(44):3997-4022

    17. [17]

      Wu W B, Ye S H, Huang L J, Xiao L, Fu Y J, Huang Q, Yu G, Liu Y Q, Qin J G, Li Q Q, Li Z. J Mater Chem, 2012, 13(22):6374-6382

    18. [18]

      Ghosh K R, Saha S K, Wang Z Y. Polym Chem, 2014, 5(19):5638-5643

    19. [19]

      Geng T M, Zhu Z M, Wang X, Xia H Y, Wang Y, Li D K. Sens Actuators B, 2107, 244:334-343

    20. [20]

      Li H B, Wu X F, Xu B W, Tong H, Wang L X. RSC Adv, 2013, 3:8645-8648  doi: 10.1039/c3ra40901e

    21. [21]

      Shaligram S, Wadgaonkar P P, Kharul U K. J Mater Chem A, 2014, 2(34):13983-13989  doi: 10.1039/C4TA02766C

    22. [22]

      Malik A H, Hussain S, Kalita S A, Iyer P K. ACS Appl Mater Interfaces, 2015, 7(48):26968-26976  doi: 10.1021/acsami.5b08068

    23. [23]

      Xiang Z H, Cao D P. Macromol Rapid Commun, 2012, 33(14):1184-1190

    24. [24]

      Long Y Y, Chen H B, Wang H M, Peng Z, Yang Y F, Zhang G Q, Li N, Liu F, Pei J. Anal Chim Acta, 2012, 744:82-91  doi: 10.1016/j.aca.2012.07.028

    25. [25]

      Sathiyan G, Sakthivel P. RSC Adv, 2016, 6(108):106705-106715  doi: 10.1039/C6RA22632A

    26. [26]

      Geng T M, Ye S N, Wang Y, Zhu H, Wang X, Liu X. Talanta, 2017, 165:282-288  doi: 10.1016/j.talanta.2016.12.046

    27. [27]

      Sang N N, Zhan C X, Cao D P. J Mater Chem A, 2015, 3(1):92-96  doi: 10.1039/C4TA04903A

    28. [28]

      Xu B W, Wu X F, Li H B, Tong H, Wang L X. Macromolecules, 2011, 44(13):5089-5092  doi: 10.1021/ma201003f

    29. [29]

      Wu Y C, Luo S H, Cao L, Jiang K, Wang L Y, Xie J C, Wang Z Y. Anal Chim Acta, 2017, 976:74-83  doi: 10.1016/j.aca.2017.04.022

    30. [30]

      Tanwar A S, Hussain S, Malik A H, Afroz M A, Iyer P K. ACS Sensors, 2016, 1(8):1070-1077  doi: 10.1021/acssensors.6b00441

    31. [31]

      Liu J Z, Zhong Y C, Lu P, Hong Y, Lam J W Y, Faisal M, Yu Y, Wong K S, Tang B Z. Polym Chem, 2010, 1(4):426 -429

    32. [32]

      Wu Y W, Qin A J, Tang B Z. Chinese J Polym Sci, 2017, 2(35):141-154

    33. [33]

      Wu X F, Hang H, Li H, Chen Y H, Tong H, Wang L X. Mater Chem Front, 2017, 1:1875-1880

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    14. [14]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    17. [17]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    18. [18]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(0)
  • Abstract views(101)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return