Citation: Liu Jin-ying, Qin Ming-gao, Y. Auphedeous Dang-i, Liu Zhi-wei, Dou Xiao-qiu, Feng Chuan-liang. Inversion of Supramolecular Chirality of Nanofibrous Structures Tuned by the Odd-Even Effects among Bis-amide and Bis-urea[J]. Acta Polymerica Sinica, ;2018, (1): 80-89. doi: 10.11777/j.issn1000-3304.2018.17179 shu

Inversion of Supramolecular Chirality of Nanofibrous Structures Tuned by the Odd-Even Effects among Bis-amide and Bis-urea

  • Corresponding author: Feng Chuan-liang, clfeng@sjtu.edu.cn
  • Received Date: 10 July 2017
    Revised Date: 31 July 2017

  • Helicity inversion of biomacromolecules (e.g., DNA or proteins) is a sophisticated ubiquitous phenomenon in many physiological processes and associated with specific bio-functions. Therefore, designing of smart systems, with tunable helical chirality and further promoting their applications in the fields of biochemistry, biology and nano-materials, has become appealing. In this regard, four novel C2-symmetric small-molecule gelators, with L-phenylalanine and benzene ring as skeletons covalently linked by amide group (CONH) or urea group (NHCONH), are designed and synthesized. Based on the odd-even effect between the amide group (CONH) and the urea group (NHCONH), the chiral reversal of the supramolecular assembly can be regulated. The structures of the compound, a-BDFAE, u-BDFAE, a-BDFAP and u-BDFAP, were confirmed by hydrogen-1 nuclear magnetic resonance(1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR) and high resolution mass spectrum (HRMS). The hydrogels were characterized using circular dichroism spectrum (CD), and they all exhibited bisignate CD effect. However, the sign and intensity were inverted between the amide and urea molecules. The microstructure of the samples was studied using the scanning electron microscopy (SEM). They all assembled into fine nanofibers with diameter in the range of tens of micrometers. The aggregation pattern of the gelators was also investigated with a UV-Vis spectroscopy in different solvents from non-gelating (ethanol) to gelating (water). Amide molecules showed a broad band at around 241 nm in ethanol, which was red-shifted to 245 nm with the solvent changed to milli-Q water. This red-shift clearly indicates the J-type aggregation pattern of the amide hydrogelators. While the UV-Vis spectroscopy of the urea molecules showed a blue-shift, suggesting that the urea molecules formed H aggregates, a different mode of self-assembly induced by the inversion of the supramolecular chirality of amide and urea hydrogels. The interaction of supramolecular aggregates at molecular level was investigated using Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the inversion of the supramolecular chirality of nanofibrous structures was tuned by the odd-even effects, providing therefore a new method for the designing of the tunable supramolecular chirality system. This kind of material has the advantages of simple synthesis, good gelation performance, good biocompatibility. Further biology study of the effects of different chiral materials on cell adhesion and proliferation, and differentiation of stem cells are under way in our laboratory.
  • 加载中
    1. [1]

      Zotti M D, Formaggio F, Crisma M, Peggion C, Moretto A, Toniolo C. J Pept Sci, 2014, 20:307-322  doi: 10.1002/psc.v20.5

    2. [2]

      Wang G L, Christensen L A, Vasquez K M. Proc Natl Acad Sci USA, 2006, 103:2677-2682  doi: 10.1073/pnas.0511084103

    3. [3]

      Rich A, Zhang S G. Nat Rev Genet, 2003, 4:566-572

    4. [4]

      Herbert A, Rich A. Genetica, 1999, 106:37-47  doi: 10.1023/A:1003768526018

    5. [5]

      Bellomo E G, Wyrsta M D, Pakstis L, Pochan D J, Deming T J. Nat Mater, 2004, 3:244-248  doi: 10.1038/nmat1093

    6. [6]

      Song G T, Ren J S. Chem Commun, 2010, 46:7283-7294  doi: 10.1039/c0cc01312a

    7. [7]

      Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Chem Rev, 2009, 109:6102-6211  doi: 10.1021/cr900162q

    8. [8]

      van Gorp J J, Vekemans J A J M, Meijer E W. J Am Chem Soc, 2002, 124:14759-14769  doi: 10.1021/ja020984n

    9. [9]

      Henze O, Feast W J, Gardebien F, Jonkheijm P, Lazzaroni R, Leclère P, Meijer E W, Schenning A P H J. J Am Chem Soc, 2006, 128:5923-5929  doi: 10.1021/ja0607234

    10. [10]

      Tao F, Bernasek S L. Chem Rev, 2007, 107:1408-1453  doi: 10.1021/cr050258d

    11. [11]

      Shimizu T, Masuda M. J Am Chem Soc, 1997, 119:2812-2818  doi: 10.1021/ja961226y

    12. [12]

      Messmore B W, Sukerkar P A, Stupp S I. J Am Chem Soc, 2005, 127:7992-7993  doi: 10.1021/ja051183y

    13. [13]

      Fu Y T, Li B Z, Huang Z B, Li Y, Yang Y G. Langmuir, 2013, 29:6013-6017  doi: 10.1021/la400910g

    14. [14]

      Lv K, Zhang L, Lu W S, Liu M H. ACS Appl Mater Inter, 2014, 6:18878-18884  doi: 10.1021/am504702p

    15. [15]

      Liu G F, Zhang D, Feng C L. Angew Chem Int Ed, 2014, 53:7789-7793  doi: 10.1002/anie.201403249

    16. [16]

      Marchesan S, Easton C D, Styan K E, Waddington L J, Kushkaki F, Goodall L, McLean K M, Forsythe J S, Hartley P G. Nanoscale, 2014, 6:5172-5180  doi: 10.1039/C3NR06752A

    17. [17]

      Yan Y, Deng K, Yu Z, Wei Z X. Angew Chem Int Ed, 2009, 48:2003-2006  doi: 10.1002/anie.v48:11

    18. [18]

      Cantekin S, Balkenende D W R, Smulders M M J, Palmans A R A, Meijer E W. Nat Chem, 2011, 3:42-46  doi: 10.1038/nchem.889

    19. [19]

      Nakano Y, Markvoort A J, Cantekin S, Filot I A W, ten Eikelder H M M, Meijer E W, Palmans A R A. J Am Chem Soc, 2013, 135:16497-16506  doi: 10.1021/ja4073645

    20. [20]

      Marty R, Nigon R, Leite D, Frauenrath H. J Am Chem Soc, 2014, 136:3919-3927  doi: 10.1021/ja412384p

    21. [21]

      Johnson R S, Yamazaki T, Kovalenko A, Fenniri H. J Am Chem Soc, 2007, 129:5735-5743  doi: 10.1021/ja0706192

    22. [22]

      Li Y, Li B Z, Fu Y T, Lin S W, Yang Y G. Langmuir, 2013, 29:9721-9726  doi: 10.1021/la402174w

    23. [23]

      Liu C X, Jin Q X, Lv K, Zhang L, Liu M H. Chem Commun, 2014, 50:3702-3705  doi: 10.1039/c4cc00311j

    24. [24]

      Mao Y Y, Liu K Y, Meng L Y, Chen L, Chen L M, Yi T. Soft Matter, 2014, 10:7615-7622  doi: 10.1039/C4SM01213E

    25. [25]

      Komori H, Inai Y. J Org Chem, 2007, 72:4012-4022  doi: 10.1021/jo0625305

    26. [26]

      Smulders M M J, Filot I A W, Leenders J M, van der Schoot P, Palmans A R, Schenning A P, Meijer E W. J Am Chem Soc, 2010, 132:611-619  doi: 10.1021/ja908053d

    27. [27]

      Oda R, Huc I, Schmutz M, Candau S J, MacKintosh F C. Nature, 1999, 399:566-569  doi: 10.1038/21154

    28. [28]

      Zhu X F, Duan P F, Zhang L, Liu M H. Chem Eur J, 2011, 17:3429-3437  doi: 10.1002/chem.v17.12

    29. [29]

      Liu G F, Zhu L Y, Ji W, Feng C L, Wei Z X. Angew Chem Int Ed, 2016, 55:2411-2415  doi: 10.1002/anie.201510140

    30. [30]

      Liu G F, Liu J Y, Feng C L, Zhao Y L. Chem Sci, 2017, 8:1769-1775  doi: 10.1039/C6SC04808K

    31. [31]

      Kumita J R, Smart O S, Woolley G A. Proc Natl Acad Sci USA, 2000, 97:3803-3808  doi: 10.1073/pnas.97.8.3803

    32. [32]

      Iwaura R, Shimizu T. Angew Chem Int Ed, 2006, 45:4601-4604  doi: 10.1002/(ISSN)1521-3773

    33. [33]

      Muraoka T, Cui H G, Stupp S I. J Am Chem Soc, 2008, 130:2946-2947  doi: 10.1021/ja711213s

    34. [34]

      Duan P F, Li Y G, Li L C, Deng J G, Liu M H. J Phys Chem B, 2011, 115:3322-3329  doi: 10.1021/jp110636b

    35. [35]

      Zhao D P, van Leeuwen T, Cheng J L, Feringa B L. Nat Chem, 2017, 9:250-256  doi: 10.1038/nchem.2668

    36. [36]

      Li B S, Cheuk K K L, Salhi F, Lam J W Y, Cha J A K, Xiao X D, Bai C L, Tang B Z. Nano Lett, 2001, 1:323-328  doi: 10.1021/nl015540o

    37. [37]

      Janssen P G A, Ruiz-Carretero A, González-Rodríguez D, Meijer E W, Schenning A P H J. Angew Chem Int Ed, 2009, 48:8103-8106  doi: 10.1002/anie.v48:43

    38. [38]

      Dou X Q, Li P, Zhang D, Feng C L. J Mate Chem B, 2013, 1:3562-3568  doi: 10.1039/c3tb20155d

    39. [39]

      Dou X Q, Zhang D, Feng C, Jiang L. ACS Nano, 2015, 9:10664-10672  doi: 10.1021/acsnano.5b04231

    40. [40]

      Dou X Q, Feng C L. Adv Mater, 2017, 29:1604062-1604082  doi: 10.1002/adma.201604062

    41. [41]

      Das A, Ghosh S. Chem Eur J, 2010, 16:13622-13628  doi: 10.1002/chem.v16.46

    42. [42]

      Choudhury P, Mandal D, Brahmachari S, Das P K. Chem Eur J, 2016, 22:5160-5172  doi: 10.1002/chem.201504888

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    11. [11]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    12. [12]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    13. [13]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    14. [14]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    15. [15]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    18. [18]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    19. [19]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(0)
  • Abstract views(135)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return