Citation: Zheng Bo-tuo, Tao Xin-feng, Ling Jun. Water Tolerated Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride Initiated by Primary Amines[J]. Acta Polymerica Sinica, ;2018, (1): 72-79. doi: 10.11777/j.issn1000-3304.2018.17172 shu

Water Tolerated Polymerization of N-Substituted Glycine N-Thiocarboxyanhydride Initiated by Primary Amines

  • Corresponding author: Ling Jun, lingjun@zju.edu.cn
  • Received Date: 3 July 2017
    Revised Date: 10 August 2017

  • N-Substituted glycine N-carboxyanhydride (NNCA) polymerization cannot tolerate H2O, because the presence of H2O leads to oligopolymerization or deterioration of NCA. In contrast, its analogue N-substituted glycine N-thiocarboxyanhydride (NNTA) is stable to H2O. In this work, by comparing 1H-NMR spectra signal of NNTA with that of internal standard (trioxane, TOX) before and after heating for 24 h in presence of water, it is shown the tolerance of NNTA to water amount was monomer-equivalent (14000 μg/g). The polymerization of NNTA initiated by benzylamine was carried out in presence of water. 1H-NMR, MALDI-ToF-MS and SEC were used to confirm the structure of polypeptoid products. The polymerization of N-ethyl glycine NTA (NEG-NTA) initiated by benzylamine showed good tolerance to initiator-equivalent water amount (100-650 μg/g). From this polymerization, high yield (> 70%) was obtained with controlled molecular weights (1600-7500) and low molecular weight distribution (PDI, i.e. polydispersity index:1.22-1.25). Increasing amount of water (14000 μg/g) suppressed the polymerization, resulting in low yields and low molecular weights to some extent, while PDI remained low. All polymers contained benzylamine end group according to MALDI-ToF-MS, which demonstrated that all the polymerization of NNTA followed the normal amine mechanism (NAM) regardless of different water contents. Polymerizations of sarcosine NTA (Sar-NTA) and N-butyl glycine NTA (NBG-NTA) in presence of initiator-equivalent water amount were also investigated. Polymerization of sarcosine NTA resulted in high yield (89%) with controlled molecular weight and low PDI (1.13), which showed that the polymerization of NNTA with higher activity was more tolerant to water. Furthermore, the polymerization kinetics confirmed the controllability of the resulting polymer by demonstrating that the polymerization followed pseudo-first order kinetics with regard to monomer up to high conversion (~90%). In addition, molecular weights of polypeptoids exhibited linear relationship with monomer conversion while PDIs kept low. It is of great interest that well-controlled NEG-NTA polymerization was carried out in commercial THF with water content (about 190 μg/g) without dehydration. This work demonstrated that the polymerization of NNTA was a robust approach to prepare polypeptoids since both the monomer synthesis and the polymerizations did not require an anhydrous environment, which would benefit the further application of polypeptoids in bioengineering and medical field.
  • 加载中
    1. [1]

      Ganesh S D, Saha N, Zandraa O, Zuckermann R N, Sáha P. Polym Bull, 2017, 74:3455-3466  doi: 10.1007/s00289-016-1902-1

    2. [2]

      Huesmann D, Sevenich A, Weber B, Barz M. Polymer, 2015, 67:240-248  doi: 10.1016/j.polymer.2015.04.070

    3. [3]

      Hoogenboom R, Schlaad H. Polym Chem, 2017, 8:24-40  doi: 10.1039/C6PY01320A

    4. [4]

      Rosales A M, Segalman R A, Zuckermann R N. Soft Matter, 2013, 9:8400-8414  doi: 10.1039/c3sm51421h

    5. [5]

      Luxenhofer R, Fetsch C, Grossmann A. J Polym Sci, Part A:Polym Chem, 2013, 51:2731-2752  doi: 10.1002/pola.26687

    6. [6]

      Chen Jingxiao, Wang Huiyuan, Xu Xiaoding, Chen Weihai, Zhang Xianzheng. Acta Polymerica Sinica, 2011, (8):799-811
       

    7. [7]

      Xu X, Yuan H, Chang J, He B, Gu Z. Angew Chem Int Ed, 2012, 51:3130-3133  doi: 10.1002/anie.v51.13

    8. [8]

      Shen Y, Li Z, Klok H A. Chinese J Polym Sci, 2015, 33:931-946  doi: 10.1007/s10118-015-1654-7

    9. [9]

      Shen Y, Fu X, Fu W, Li Z. Chem Soc Rev, 2015, 44:612-622  doi: 10.1039/C4CS00271G

    10. [10]

      Jiang Y, Wang S, Zhang X, Tao Y, Wang X. J Polym Sci, Part A:Polym Chem, 2016, 54:2618-2624  doi: 10.1002/pola.v54.16

    11. [11]

      Wang Mingzhi, Du Jianzhong. Acta Polymerica Sinica, 2014, (9):1183-1194
       

    12. [12]

      Lv S, Tang Z, Li M, Lin J, Song W, Liu H, Huang Y, Zhang Y, Chen X. Biomaterials, 2014, 35:6118-6129  doi: 10.1016/j.biomaterials.2014.04.034

    13. [13]

      Zhou C, Wang M, Zou K, Chen J, Zhu Y, Du J. ACS Macro Lett, 2013, 2:1021-1025  doi: 10.1021/mz400480z

    14. [14]

      Deng C, Wu J, Cheng R, Meng F, Klok H A, Zhong Z. Prog Polym Sci, 2014, 39:330-364  doi: 10.1016/j.progpolymsci.2013.10.008

    15. [15]

      Tao Youhua. Acta Polymerica Sinica, 2016, (9):1151-1159
       

    16. [16]

      Thielke M W, Secker C, Schlaad H, Theato P. Macromol Rapid Commun, 2016, 37:100-104  doi: 10.1002/marc.v37.1

    17. [17]

      Fetsch C, Grossmann A, Holz L, Nawroth J F, Luxenhofer R. Macromolecules, 2011, 44:6746-6758  doi: 10.1021/ma201015y

    18. [18]

      Qiu N, Liu X, Zhong Y, Zhou Z, Piao Y, Miao L, Zhang Q, Tang J, Huang L, Shen Y. Adv Mater, 2016, 28:10613-10622  doi: 10.1002/adma.201603095

    19. [19]

      Liu X, Xiang J, Zhu D, Jiang L, Zhou Z, Tang J, Liu X, Huang Y, Shen Y. Adv Mater, 2016, 28:1743-1752  doi: 10.1002/adma.201504288

    20. [20]

      Barz M, Luxenhofer R, Zentel R, Vicent M J. Polym Chem, 2011, 2:1900-1918  doi: 10.1039/c0py00406e

    21. [21]

      Chen Y, Xu Z, Zhu D, Tao X, Gao Y, Zhu H, Mao Z, Ling J. J Colloid Interface Sci, 2016, 483:201-210  doi: 10.1016/j.jcis.2016.08.038

    22. [22]

      Fokina A, Klinker K, Braun L, Jeong B G, Bae W K, Barz M, Zentel R. Macromolecules, 2016, 49:3663-3671  doi: 10.1021/acs.macromol.6b00582

    23. [23]

      Zhu H, Chen Y, Yan F J, Chen J, Tao X F, Ling J, Yang B, He Q J, Mao Z W. Acta Biomater, 2017, 50:534-545  doi: 10.1016/j.actbio.2016.12.050

    24. [24]

      Xuan S, Gupta S, Li X, Bleuel M, Schneider G J, Zhang D. Biomacromolecules, 2017, 18:951-964  doi: 10.1021/acs.biomac.6b01824

    25. [25]

      Jiao F, Chen Y, Jin H, He P, Chen C L, De Yoreo J J. Adv Funct Mater, 2016, 26:8960-8967  doi: 10.1002/adfm.v26.48

    26. [26]

      Sun J, Jiang X, Siegmund A, Connolly M D, Downing K H, Balsara N P, Zuckermann R N. Macromolecules, 2016, 49:3083-3090  doi: 10.1021/acs.macromol.6b00353

    27. [27]

      Zhang D, Lahasky S H, Guo L, Lee C-U, Lavan M. Macromolecules, 2012, 45:5833-5841  doi: 10.1021/ma202319g

    28. [28]

      Tao X, Deng C, Ling J. Macromol Rapid Commun, 2014, 35:875-881  doi: 10.1002/marc.v35.9

    29. [29]

      Tao X, Zheng B, Kricheldorf H R, Ling J. J Polym Sci, Part A:Polym Chem, 2017, 55:404-410  doi: 10.1002/pola.v55.3

    30. [30]

      Tao X, Du J, Wang Y, Ling J. Polym Chem, 2015, 6:3164-3174  doi: 10.1039/C5PY00191A

    31. [31]

      Tao X, Deng Y, Shen Z, Ling J. Macromolecules, 2014, 47:6173-6180  doi: 10.1021/ma501131t

    32. [32]

      Deng Y, Zou T, Tao X, Semetey V, Trepout S, Marco S, Ling J, Li M H. Biomacromolecules, 2015, 16:3265-3274  doi: 10.1021/acs.biomac.5b00930

    33. [33]

      Kricheldorf H R. α-Aminoacid-N-carboxy-anhydrides and Related Heterocycles:Syntheses, Properties, Peptide Synthesis, Polymerization. Berlin:Springer Science & Business Media, 2012

    34. [34]

      Pan X, Liu Y, Li Z, Cui S, Gebru H, Xu J, Xu S, Liu J, Guo K. Macromol Chem Phys, 2017, 218:1600483  doi: 10.1002/macp.201600483

    35. [35]

      Dimitrov I, Schlaad H. Chem Commun, 2003:2944-2945
       

    36. [36]

      Hou Y, Yuan J, Zhou Y, Yu J, Lu H. J Am Chem Soc, 2016, 138:10995-11000  doi: 10.1021/jacs.6b05413

    37. [37]

      Yuan J, Sun Y, Wang J, Lu H. Biomacromolecules, 2016, 17:891-896  doi: 10.1021/acs.biomac.5b01588

    38. [38]

      Baumgartner R, Fu H, Song Z, Lin Y, Cheng J. Nat Chem, 2017:2712-2720

    39. [39]

      Guo L, Lahasky S H, Ghale K, Zhang D. J Am Chem Soc, 2012, 134:9163-9171  doi: 10.1021/ja210842b

    40. [40]

      Chan B A, Xuan S, Horton M, Zhang D. Macromolecules, 2016, 49:2002-2012  doi: 10.1021/acs.macromol.5b02520

    41. [41]

      Deming T J. Nature, 1997, 390:386-389  doi: 10.1038/37084

    42. [42]

      Peng H, Chen W L, Kong J, Shen Z Q, Ling J. Chinese J Polym Sci, 2014, 32:743-750  doi: 10.1007/s10118-014-1445-6

    43. [43]

      Peng H, Ling J, Shen Z. J Polym Sci, Part A:Polym Chem, 2012, 50:1076-1085  doi: 10.1002/pola.v50.6

    44. [44]

      Peng H, Ling J, Zhu Y, You L, Shen Z. J Polym Sci, Part A:Polym Chem, 2012, 50:3016-3029  doi: 10.1002/pola.26077

    45. [45]

      Ling J, Peng H, Shen Z. J Polym Sci, Part A:Polym Chem, 2012, 50:3743-3749  doi: 10.1002/pola.v50.18

    46. [46]

      Holm R, Weber B, Heller P, Klinker K, Westmeier D, Docter D, Stauber R H, Barz M. Macromol Biosci, 2017:1600514
       

    47. [47]

      Kramer J R, Deming T J. Biomacromolecules, 2010, 11:3668-3672  doi: 10.1021/bm101123k

    48. [48]

      Lavilla C, Byrne M, Heise A. Macromolecules, 2016, 49:2942-2947  doi: 10.1021/acs.macromol.6b00498

    49. [49]

      Aliferis T, Iatrou H, Hadjichristidis N. Biomacromolecules, 2004, 5:1653-1656  doi: 10.1021/bm0497217

    50. [50]

      Tao X, Zheng B, Bai T, Zhu B, Ling J. Macromolecules, 2017, 50:3066-3077  doi: 10.1021/acs.macromol.7b00309

    51. [51]

      Ling J, Huang Y. Macromol Chem Phys, 2010, 211:1708-1711  doi: 10.1002/macp.201000115

    52. [52]

      Liu J, Ling J. J Phys Chem A, 2015, 119:7070-7074  doi: 10.1021/acs.jpca.5b04654

    53. [53]

      Bai T, Ling J. J Phys Chem A, 2017, 121:4588-4593  doi: 10.1021/acs.jpca.7b04278

  • 加载中
    1. [1]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    2. [2]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    3. [3]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    4. [4]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    5. [5]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    9. [9]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    12. [12]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    13. [13]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    16. [16]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    17. [17]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    20. [20]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

Metrics
  • PDF Downloads(0)
  • Abstract views(199)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return