Citation: Li Pan, Dong Chang-ming. Synthesis of Hyperbranched Polylysine Based on Acid-base Dynamic Chemistry[J]. Acta Polymerica Sinica, ;2018, (1): 63-71. doi: 10.11777/j.issn1000-3304.2018.17160 shu

Synthesis of Hyperbranched Polylysine Based on Acid-base Dynamic Chemistry

  • Corresponding author: Dong Chang-ming, cmdong@sjtu.edu.cn
  • Received Date: 16 June 2017
    Revised Date: 17 July 2017

  • Novel Nε-(tetrafluoroboran ammonium)-L-lysine-N-carboxyanhydride (NH3BF4-Lys NCA) was synthesized for the first time and fully characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy(1H-NMR, 13C-NMR, 19F-NMR) and time of flight mass spectroscopy (TOF-MS). When the polymerization was conducted at 20 ℃, the deactivated NH3BF4-Lys NCA does not change within 110 h, implying no polymerization occurred. However, the ionic monomer at 25 ℃ dynamically dissociates and is transformed into an activated AB* inimer type of NCA containing a primary ε-amine (i.e., inimer-NCA), which then triggers ring-opening polymerization (ROP) to produce hyperbranched polylysines salts in one-pot. The ROP of NH3BF4-Lys NCA at 25 ℃ to 55 ℃ in DMF solution conforms to first-order kinetics and the observed kinetic rate constant increases from 0.01 h-1 to 0.11 h-1, due to the enhanced dissociation kinetics of tetrafluoroboran ammonium. The resulting hyperbranched polylsines salts mainly exhibits a β-turn secondary conformation (about 70%) in solid state, as characterized by FTIR. With the polymerization temperature increased from 25 ℃ to 55 ℃, the degree of branching of the hyperbranched polylysines apparently decreases from 0.53 to 0.34, while the molar percentage of cyclic dimer units increases conversely from 6.4% to 11.5%. During the polymerization process, monomers, dimers and the resulting oligomers concomitantly dissociate to generate primary ε-amine, leading to an increasing initiator concentration coupled with a decreasing monomer concentration. By consequence, the molecular weight of the hyperbranched polymers cannot be adjusted by changing the polymerization temperature and the monomer concentration. However, the degree of branching and the molar percentage of cyclic dimer units within the hyperbranched polymers can be tuned to some extent by adjusting the polymerization temperature. Finally, both Fourier transform ion cyclotron resonance mass spectroscopy (FTICR-MS) and heteronuclear single quantum coherence spectroscopy (1H-13C HSQC) confirms that a cyclic dimer is mainly formed from the two NH3BF4-Lys NCA monomers at initial stage, which further initiates ROP to produce the hyperbranched polymers according to the well-known normal amine mechanism. Meanwhile, a little amount of NH3BF4-Lys NCA directly polymerizes itself to generate the hyperbranched polymers without forming a cyclic dimer center.
  • 加载中
    1. [1]

      Wang Mingzhi, Du Jianzhong. Acta Polymerica Sinica, 2014, (9):1183-1194
       

    2. [2]

      Tao Youhua. Acta Polymerica Sinica, 2016, (9):1151 -1159
       

    3. [3]

      Lu H, Wang J, Song Z Y, Yin L C, Zhang Y F, Tang H Y, Tu C L, Lin Y, Cheng J J. Chem Commun, 2014, 50(2):139-155  doi: 10.1039/C3CC46317F

    4. [4]

      Deming T J. Chem Soc Rev, 2015, 116(3):786-808

    5. [5]

      Vacogne C D, Schlaad H. Chem Commun, 2015, 51(86):15645-15648  doi: 10.1039/C5CC06905J

    6. [6]

      Zhao W, Gnanou Y, Hadjichristidis N. Chem Commun, 2015, 51(17):3663-3666  doi: 10.1039/C4CC09055A

    7. [7]

      Dimitrov I, Schlaad H. Chem Commun, 2003, 23:2944-2945
       

    8. [8]

      Conejos-Sánchez I, Duro-Castano A, Birke A, Barz M, Vicent M J. Polym Chem, 2013, 4(11):3182-3186  doi: 10.1039/c3py00347g

    9. [9]

      Kramer J R, Deming T J. Biomacromolecules, 2010, 11(12):3668-3672  doi: 10.1021/bm101123k

    10. [10]

      Habraken G J, Peeters M, Dietz C H, Koning C E, Heise A. Polym Chem, 2010, 1(4), 514-524  doi: 10.1039/b9py00337a

    11. [11]

      Pickel D L, Politakos N, Avgeropoulos A, Messman J M. Macromolecules, 2009, 42(20):7781-7788  doi: 10.1021/ma901340y

    12. [12]

      Wang D L, Jin Y, Zhu X Y, Yan D Y. Prog Polym Sci, 2017, 64:114-153  doi: 10.1016/j.progpolymsci.2016.09.005

    13. [13]

      Wang D L, Zhao T Y, Zhu X Y, Yan D Y, Wang W X. Chem Soc Rev, 2015, 44(12):4023-4071  doi: 10.1039/C4CS00229F

    14. [14]

      Huang Y, Wang D L, Zhu X Y, Yan D Y, Chen R J. Polym Chem, 2015, 6(15):2794-2812  doi: 10.1039/C5PY00144G

    15. [15]

      Rodríguez-Hernández J, Gatti M, Klok H A. Biomacromolecules, 2003, 4(2):249-258  doi: 10.1021/bm020096k

    16. [16]

      Klok H A, Rodríguez-Hernández J. Macromolecules, 2002, 35(23):8718-8723  doi: 10.1021/ma020857b

    17. [17]

      Chang X, Dong C M. Biomacromolecules, 2013, 14(9):3329-3337  doi: 10.1021/bm400951m

    18. [18]

      Li P, Dong C M. ACS Macro Lett, 2017, 6(3):292 -297  doi: 10.1021/acsmacrolett.7b00167

    19. [19]

      Vacogne C D, Schlaad H. Chem Commun, 2015, 51(86):15645-15648  doi: 10.1039/C5CC06905J

    20. [20]

      Zhao W, Gnanou Y, Hadjichristidis N. Chem Commun, 2015, 51(17):3663-3666  doi: 10.1039/C4CC09055A

    21. [21]

      Kricheldorf H R, Lossow C V, Schwarz G. Macromolecules, 2005, 38(13):5513-5518  doi: 10.1021/ma0401368

    22. [22]

      Wang W Y, Chen, L. J Appl Polym Sci, 2007, 104(3):1482-1486  doi: 10.1002/(ISSN)1097-4628

    23. [23]

      Wang W X, Zheng Y, Roberts E, Duxbury C J, Ding L F, Irvine D J, Howdle S M. Macromolecules, 2007, 40(20):7184-7194  doi: 10.1021/ma0707133

    24. [24]

      Parzuchowski P G, Grabowska M, Tryznowski M, Rokicki G. Macromolecules, 2006, 39(21):7181-7186  doi: 10.1021/ma061488c

    25. [25]

      Zou J, Fan J W, He X, Zhang S Y, Wang H, . Wooley K L. Macromolecules, 2013, 46(10):4223-4226  doi: 10.1021/ma4007939

    26. [26]

      Scholl M, Nguyen T Q, Bruchmann B, Klok H A. J Polym Sci, Part A:Polym Chem, 2007, 45(23):5494-5508  doi: 10.1002/(ISSN)1099-0518

    27. [27]

      Zelzer M, Heise A. Polym Chem, 2013, 4(13):3896-3904  doi: 10.1039/c3py00431g

    28. [28]

      Fan J W, Zou J, He X, Zhang F W, Raymond J E, Wooley K L. Chem Sci, 2014, 5(1):141-150  doi: 10.1039/C3SC52504J

    29. [29]

      Kotharangannagari V K, Sánchez-Ferrer A, Ruokolainen J, Mezzenga R. Macromolecules, 2012, 45(4):1982-1990  doi: 10.1021/ma2026379

    30. [30]

      Kong J L, Yu S N. Acta Bioch Bioph Sin, 2007, 39(8):549-559  doi: 10.1111/abbs.2007.39.issue-8

    31. [31]

      Tao Y H, Chen X Y, Jia F, Wang S X, Xiao C S, Cui F C, Li Y Q, Bian Z, Chen X S, Wang X H. Chem Sci, 2015, 6(11):6385-6391  doi: 10.1039/C5SC02479J

    32. [32]

      Ball J B, Alewood P F. J Mol Recognit, 1990, 3(2):55-64  doi: 10.1002/(ISSN)1099-1352

    33. [33]

      Huesmann D, Birke A, Klinker K, Turk S, Rader H J, Barz M. Macromolecules, 2014, 47(3):928-936  doi: 10.1021/ma5000392

    34. [34]

      Wolf F K, Frey H. Macromolecules, 2009, 42(24):9443-9456  doi: 10.1021/ma9016746

    35. [35]

      Zhao T Y, Zheng, Y, Poly J, Wang W X. Nat Commun, 2013, 4:1873-1881  doi: 10.1038/ncomms2887

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    6. [6]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    7. [7]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Xiao-Qi Xu Yapei Wang . Practice of Cultivating Multi-Disciplinary Talents with Comprehensive Skills through Demand-Driven, Individualized Education, and Humanities and Science Integration. University Chemistry, 2024, 39(6): 90-97. doi: 10.3866/PKU.DXHX202311049

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Yan Su Yuzhen Pan Fuping Tian Xiuyun Wang Tieqi Xu Yongce Zhang Miao Cui Wenfeng Jiang . Construction and Practice of the National Chemical Experimental Teaching Demonstration Center under the Background of Digital Education. University Chemistry, 2024, 39(7): 218-222. doi: 10.12461/PKU.DXHX202406001

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(0)
  • Abstract views(121)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return