Citation: Yi Zou, Chen-guang Liu, Ai-hua He. Isothermal Crystallizations of Polybutene-1 and Polybutene-1 Alloy from Their Solutions[J]. Acta Polymerica Sinica, ;2018, 0(6): 765-772. doi: 10.11777/j.issn1000-3304.2017.17322 shu

Isothermal Crystallizations of Polybutene-1 and Polybutene-1 Alloy from Their Solutions

  • It is known that the solubility of PB-1 in n-heptane correlates closly to temperature, so it is thus of vital importance to investigate the solution crystallization of polybutene-1 (PB-1) and polybutene-1 in-reactor alloy (PBA) via the cooling solution crystallization method. In this work, the isothermal solution crystallization behaviors of PB-1 and PB-1 in-reactor alloy (PBA) from n-heptane were investigated. The dissolution temperature and isothermal crystallization temperature were determined from the solubility curves of PB-1 in n-heptane obtained by grametry. The isothermal crystallization kinetics of PB-1 and PBA from solutions were studied by dilatometry. The solution crystallization rate decreased with increasing isothermal temperature without changing the nucleation mode of PB-1. However, the crystallization rate of PB-1 component in PBA was faster than that of pure PB-1. The presence of polypropylene (PP) component in PBA shortened nucleation induction period of PB-1 component, and PB-b-PP copolymer could accelerate crystallization rate of PB-1 component. Additionally, the DSC test confirmed that the crystal form I′ and III of PB-1 were generated during the solution crystallization in both pure PB-1 and PBA, and no crystal form transformation occurred at room temperature. Due to the solvation of n-heptane, the two crystal forms I and II of PB-1 were not observed in this system. From WAXD measurement, it has also been found that the increase in solution crystallization temperature promoted the relative content of the crystal form III with a decrease in the crystallinity of PB-1. This was because that the increase in temperature led to decrease in supersaturation of solution system, which weakened the driving force of the crystallization and decreased the crystallizable component of PB-1. The behavior change of PB-1 component in PBA with temperature was similar to that of pure PB-1. At the same temperature, the presence of PP component in PBA promoted the III/I′ ratio and the crystallinity of PB-1. We further proposed the crystallization models for PB-1 and PBA in solutions.
  • 加载中
    1. [1]

      Luciani L, Seppala J, Lofgren B. Prog Polym Sci, 1988, 13(1): 37-62

    2. [2]

      Galli P, Vecellio G. J Polym Sci, Part A: Polym Chem, 2003, 42(3): 396-415

    3. [3]

      Kopp S, Wittmann J C, Lotz B. J Mater Sci, 1994, 29(23): 6159-6166

    4. [4]

      Alfonso G C, Azzurri F, Castellano M. J Therm Anal Calorim, 2001, 66(1): 197-207

    5. [5]

      Holland V F, Miller R L. J Appl Phys, 1964, 35(11): 3241-3248

    6. [6]

      And B L, Thierry A. Macromolecules, 2014, 36(36): 286-290

    7. [7]

      Qiao Y, Wang Q, Men Y. Macromolecules, 2016, 49(14)

    8. [8]

      Wang Y, Lu Y, Jiang Z, Men Y. Macromolecules, 2014, 47(18): 6401-6407

    9. [9]

      Wang Y, Lu Y, Zhao J, Jiang Z, Men Y. Macromolecules, 2014, 47(24): 8653-8662

    10. [10]

      Azzurri F, Flores A, Alfonso G C. Macromolecules, 2002, 35(24): 128-145

    11. [11]

      Li L, Liu T, Zhao L, Yuan W K. Macromolecules, 2009, 42(42): 2286-2290

    12. [12]

      Shi J, Wu P, Li L, Liu T, Zhao L. Polymer, 2009, 50(23): 5598-5604

    13. [13]

      Xu Y, Liu T, Li L, Zhao L. Polymer, 2012, 53(26): 6102-6111

    14. [14]

      Rosa C D, Ballesteros O R D, Auriemma F, Girolamo R D, Scarica C. Macromolecules, 2014, 47(13): 4317-4329

    15. [15]

      Wanjale S D, Jog J P. J Polym Sci, Part B: Polym Phys, 2003, 41(10): 1014-1021

    16. [16]

      Jog J P. J Macromol Sci B, 2003, 42(6): 1141-1152

    17. [17]

      Kalay G, Kalay C R. J Appl Polym Sci, 2003, 88(3): 806–813

    18. [18]

      Lu K, Yang D. Polym Bull, 2007, 58(4): 731-736

    19. [19]

      Liu Y, Cui K, Tian N, Zhou W, Meng L. Macromolecules, 2012, 45(6): 2764-2772

    20. [20]

      Kitamura M. J Cryst Growth, 2002, 237-239(3): 2205-2214

    21. [21]

      Davey R J, Schroeder S L M, Ter Horst J H. Angew Chem Int Ed, 2013, 52: 2166-2179

    22. [22]

      Frenkel D. Science, 1997, 277(5334): 1975

    23. [23]

    24. [24]

    25. [25]

      Sastry K S, Patel R D. Eur Polym J, 1972, 8(1): 63-74

    26. [26]

      Geil P H. J Macromol Sci B, 2012, 23(1): 115-142

    27. [27]

      Keunhyung Lee, Steven Givens, J F R. Macromolecules, 2007, 40(7): 2590-2595

    28. [28]

      Kaszonyiova M, Rybnikar F, Geil P H. J Macromol Sci B, 2004, 43(5): 1095-1114

    29. [29]

      Yamashita M, Ueno S. Cryst Res Technol, 2007, 42(12): 1222-1227

    30. [30]

      Tosaka M, Takashi Kamijo, Tsuji M, Kohjiya S, Ogawa T, Isoda S, Takashi Kobayashi. Macromolecules, 2000, 33(26): 9666-9672

    31. [31]

      Shao H F, Ma Y P, Nie H R, He A H. Chinese J Polym Sci, 2016, 34(9): 1141-1149

    32. [32]

      He A, Zheng W, Shi Y, Liu G, Yao W, Huang B. Polym Int, 2012, 61(10): 1575-1581

    33. [33]

      He A, Shi Y, Liu G, Yao W, Huang B. Chinese J Polym Sci, 2012, 30(5): 632-641

    34. [34]

      Jiang B, Shao H, Nie H, He A. Polym Chem, 2015, 6(17): 3315-3323

    35. [35]

      Dehring K A, Workman H L, Miller K D, Mandagere A, Poole SK. J Pharmaceut Biomed, 2004, 36(3): 447-56

    36. [36]

      Mantzaris N V. Chem Eng Sci, 2005, 60(17): 4749-4770

    37. [37]

    38. [38]

      Avrami M. J Chem Phys, 1939, 7: 1103-1112

    39. [39]

      Avrami M. J Chem Phys, 1940, 8: 212-224

    40. [40]

      Avrami M. J Chem Phys, 1941, 9: 177-184

    41. [41]

      Allegra G, Corradini P, Elias H G, Geil P H, Keith H D, Wundedich B. IUPAC Commission on Macromolecular Nomenclature, Pure & Appl Chem, 1989, 61(4): 769-785

    42. [42]

      Shieh Y T, Lee M S, Chen S A. Polymer, 2001, 42(9): 4439-4448

    43. [43]

      Jr J B, Youngman E A. J Polym Sci B, 1964, 2(9): 903-907

    44. [44]

    45. [45]

      Yao K C, Nie H R, Liang Y R, Qiu D, He A H. Polymer, 2015, 80: 259-264

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    4. [4]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    5. [5]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    6. [6]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    7. [7]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    8. [8]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    9. [9]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    10. [10]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

Metrics
  • PDF Downloads(0)
  • Abstract views(111)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return