Citation: Tian-xiao Chang, Hang-tian Zhang, Cong-jie Lu, Yi-xian Wu. In situ Synthesis and Characterization of Chitosan-g-polytetrahydrofuran Graft Copolymer/Ag Nanocomposite via Living Cationic Polymerization[J]. Acta Polymerica Sinica, ;2018, 0(6): 700-711. doi: 10.11777/j.issn1000-3304.2017.17290 shu

In situ Synthesis and Characterization of Chitosan-g-polytetrahydrofuran Graft Copolymer/Ag Nanocomposite via Living Cationic Polymerization

  • Corresponding author: Yi-xian Wu, wuyx@mail.buct.edu.cn
  • Received Date: 18 October 2017
    Revised Date: 22 November 2017
    Available Online: 25 April 2018

  • A novel nanocomposite material of chitosan-g-polytetrahydrofuran (PTHF) graft copolymers with silver (Ag) nanoparticles, CS-g-PTHF/Ag, was successfully in situ prepared via combination of living cationic opening polymerization of tetrahydrofuran (THF) with controlled termination of living PTHF chains " grafting onto” chitosan macromolecular backbone. Chemical structure of CS-g-PTHF/Ag was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), and X-ray photoelectron spectroscopy (XPS). The total content of Ag, drug releasing rate and micromorphology of CS-g-PTHF/Ag composites were characterized by ultraviolet spectroscopy (UV), polarizing microscopy (POM), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), respectively. The results show that the acylation degree of average functional groups in single glucosamine was 20%. The number-average molecular weight (Mn) and average grafting number could be designed by changing the dosage of allylBr/AgClO4 initiating system and the molar ratio of living PTHF chains to the ―NH2 functional groups in chitosan backbone. The Mn,PTHF ranged from 1400 to 2600 and average grafting number increased from 4 to 21 on the basis of every 1000 glucosamine units along the macromolecular backbone. The PTHF branches influenced the crystallinity of the acylated chitosan backbone. The microphase separation of CS-g-PTHF/Ag nanocomposite was observed, and the micromorphology was related to grafting density in the CS-g-PTHF graft copolymers. The crystallization activity of the backbone was limited with an increase in the grafting number of PTHF branches. Meanwhile, the CS-g-PTHF graft copolymer was found to behave pH-sensitive drug delivery. The size of the drug-loaded microspheres decreased with the increasing average grafting number in CS-g-PTHF graft copolymers. Drug-loading percentage of different CS-g-PTHF drug deliveries varied from 53% to 80%. Taking CS-g6-PTHF1.4k as an example, its drug-releasing rate (DRR) was accelerated in weak acid of phosphate buffered solution (pH = 6.0). The drug-releasing process included three stages: in the first stage (4 h), CS-g6-PTHF1.4k drug delivery released fast with a DRR of 63%. In the second stage from 4 h to 8 h, DRR was slightly changed. In the third stage, drug delivery accelerated and DRR reached 100%. Drug was inhibited to release in the simulated intestinal fluid (pH = 1.2), simulated gastrointestinal fluid (pH = 7.4), simulated blood (pH = 7.4). In simulated intestinal fluid (pH = 1.2), drug release was fast in the first 4 h, and the accumulated drug release was 29%, and accumulated DRR was 35% within 25 h. In simulated gastrointestinal fluid (pH = 7.4) and simulated blood (pH = 7.4), the drug-release rate reached a maximum in the first 2 h, and DDR was 51% in 25 h. The total mass content of Ag in CS-g-PTHF/Ag nanocomposite varied from 2.2% to 5.7%, which led to antibacterial performance in CS-g-PTHF/Ag nanocomposite. For CS-g7-PTHF2.6k/Ag-5.7, diameter of inhibition zone of Escherichhia coli was 13.0 mm, and of Aspergillus niger was 10.5 mm. This novel CS-g-PTHF/Ag nanocomposite, with the biocompatibility of rigid chitosan, the humidity resistance of soft polytetrahydrofuran, and the antibacterial activity of nano-silver all combined, would have a prospect in biomedical application.
  • 加载中
    1. [1]

      Souza H K S, Goncalves M D P, Gomez J. Biomacromolecules, 2011, 12: 1015-1023  doi: 10.1021/bm101356g

    2. [2]

      Majidi N S, Emtiazi G, Esfahani S S. J Med Bateriol, 2016, 5(4): 9-14

    3. [3]

      Ding B B, Gao H C, Song J H, Li Y Y, Zhang L N, Cao X D, Xu M, Cai J. Appl Mater Interfaces, 2016, 8: 19739-19746  doi: 10.1021/acsami.6b05302

    4. [4]

      Ngah W S W, Teong L C, Hanafiah M A K M. Carbohydr Polym, 2011, 83(4): 1446-1456  doi: 10.1016/j.carbpol.2010.11.004

    5. [5]

      LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S. Carbohydr Polym, 2016, 151: 172-188  doi: 10.1016/j.carbpol.2016.05.049

    6. [6]

      Sun L Z, Wang Y Z, Jiang T Y, Zheng X, Zhang J H, Sun J, Sun C S, Wang S L. ACS Appl Mater Interfaces, 2013, 5: 103-113  doi: 10.1021/am302246s

    7. [7]

      Zong Z, Kimura Y, Takahashi M, Yamane H. Polymer, 2000, 41(3): 899-906  doi: 10.1016/S0032-3861(99)00270-0

    8. [8]

      Liu J, Meng C G, Liu S, Kan J, Jin C H. Food Hydrocolloid, 2017, 63: 457-466  doi: 10.1016/j.foodhyd.2016.09.035

    9. [9]

      Pasanphan W, Rattanawongwiboon T, Rimdusit P, Piroonpan T. Radiat Phys Chem, 2014, 94: 199-204  doi: 10.1016/j.radphyschem.2013.06.026

    10. [10]

      Gunbas I D, Sezer U A, İz S G, Gürhan İ D, Hasirci N. Ind Eng Chem Res, 2012, 51(37): 11946-11954  doi: 10.1021/ie3015523

    11. [11]

      Vasquez D, Milusheva R, Baumann P, Constantin D, Chami M, Palivan C G. Langmuir, 2014, 30(4): 965-975  doi: 10.1021/la404558g

    12. [12]

      Guo A R, Yang W X, Yang F, Yu R, Wu Y X. Macromolecules, 2014, 47: 5450-5461  doi: 10.1021/ma501060y

    13. [13]

      Theiler S, Diamantouros S E, Jockenhoevel S, Keul H, Moeller M. Polym Chem, 2011, 2(10): 2273-2283  doi: 10.1039/c1py00262g

    14. [14]

      Jikei M, Aikawa Y, Matsumoto K. High Perform Polym. 2016, 28(9): 1015-1023  doi: 10.1177/0954008315613423

    15. [15]

      Meyer W, Engelhardt S, Novosel E, Elling B, Wegener M, Krüger H. J Funct Biomater, 2012, 3(2): 257-268  doi: 10.3390/jfb3020257

    16. [16]

      Pomel C, Leborgne C, Cheradame H, Scherman D, Kichler A, Guegan P. Pharm Res, 2008, 25(12): 2963-2971  doi: 10.1007/s11095-008-9698-9

    17. [17]

      Buruiana T, Melinte V, Chibac A , Matiut S, Balan L. J Biomater Sci Polym Ed, 2012, 23(7): 955-972  doi: 10.1163/092050611X566801

    18. [18]

      Guo A R, Yang F, Yu R, Wu Y X. Chinese J Polym Sci, 2015, 33(1): 23-35  doi: 10.1007/s10118-015-1571-9

    19. [19]

    20. [20]

    21. [21]

  • 加载中
    1. [1]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    3. [3]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    6. [6]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    10. [10]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    11. [11]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(0)
  • Abstract views(138)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return