Citation: De-zhong Liu, Jie-fu Li, Wen-tao Huang, Shu-guang Yang. Progress in Polymer Complex Fibers[J]. Acta Polymerica Sinica, ;2018, (4): 445-455. doi: 10.11777/j.issn1000-3304.2017.17285 shu

Progress in Polymer Complex Fibers

  • Corresponding author: Shu-guang Yang, shgyang@dhu.edu.cn
  • Received Date: 16 October 2017
    Revised Date: 11 November 2017

  • Functionalization and intelligentialization are the trends of the fiber development. The single component fiber is hard for performace optimization. The multi-component fiber could combine the characteristic of different components, and realize the properties integration and optimization. Different polymers aggregate together based on non-covalent bonds to form homogenous phase, which is defined as polymer complex. Polymer complex can be classified into several categories according to their characteristic rmolecular interaction, including polyelectrolyte complex, stereocomplex, hydrogen-bonded complex, inclusion complex, polymer-metal complex and charge-transfer complex. Polymer complex fibers are defined as those prepared through polymer complexation process or by directly spinning polymer complex. In polymer complex fibers, different polymers have miscibility on the molecular level, which provides a platform to design the functionality and to futher explore intelligentialization. Polymer complex fibers could be retrospected to stereocomplex fibers in early 1990s, but the mainly investigated ones were polyelectrolyte complex fibers (polyion complex fibers). Recently, hydrogen-bonded polymer complex fibers have been reported. Wan et al. made a review on polyelectrolyte complex fibers. But up to now, there is no unified concept for polymer complex fiber. This review collects research works on fibers of different types of compexes, and puts forward to the concept of polymer complex fibers. Different approaches that adopted to fabricate polymer complex fibers, like interfacial drawing, coaxial spinning, and electrospinning, are discussed. The review summarizes the properties of polymer complex fibers, such as conductivity, fluorescence, and elasticity, and focuses on their apllications in separation, controlled release, tissue engineering, anti-bacterials and catalysis. Using newly synthetized polymers or modified polymers to fabricate polymer complex fibers with multi-functionality and developing new methods and technologies to improve the efficiency of fiber fabrication are our effort directions of polymer complex fiber research.
  • 加载中
    1. [1]

      Shen Xinyuan. Chemical Fiber Manual. Beijing:China Textile Press, 2008. 1-2

    2. [2]

      Shen Xinyuan. Chemical Fiber Identification and Inspection. Beijing:China Textile Press, 2013. 1-2

    3. [3]

      Ishikawa T. Adv Polym Sci, 2005, 178:109-144  doi: 10.1007/b104206

    4. [4]

      Hearle J W S. High Performance Fibres. Cambridge:Woodhead Publishing, 2001. 1-25

    5. [5]

      Cusano A, Consales M, Crescitelli A, Ricciardi A. Lab-on-Fiber Technology. Springer International Publishing, 2014.1-18

    6. [6]

      Consales M, Pisco M, Cusano A. Photonic Sensors, 2012, 2(4):289-314  doi: 10.1007/s13320-012-0095-y

    7. [7]

      Ricciardi A, Consales M, Quero G, Crescitelli A, Esposito E, Cusano A. Opt Fiber Technol, 2013, 19(6):772-784  doi: 10.1016/j.yofte.2013.07.010

    8. [8]

      Ricciardi A, Consales M, Quero G, Crescitelli A, Esposito E, Cusano A. ACS Photonics, 2014, 1(1):69-78  doi: 10.1021/ph400075r

    9. [9]

      Consales M, Ricciardi A, Crescitelli A, Esposito E, Cutolo A, Cusano A. ACS Nano, 2012, 6(4):3163  doi: 10.1021/nn204953e

    10. [10]

      Jeffries R. Bicomponent Fibers. Watford: Merrow Publishing Company Limited, 1971. 1-4

    11. [11]

      Marcinčin A. Prog Polym Sci, 2002, 27(5):853-913  doi: 10.1016/S0079-6700(02)00002-3

    12. [12]

      Chen Rizao. China Synthetic Fiber Industry, 1986, (3):29-35
       

    13. [13]

      Michaels A S. Ind Eng Chem, 1965, 57(10):32-40  doi: 10.1021/ie50670a007

    14. [14]

      Tsuchida E, Abe K. Adv Polym Sci, 1982, 45(12):1-119
       

    15. [15]

      Jiang M, Li M, Xiang M, Zhou H. Adv Polym Sci, 1999, 146:121-196  doi: 10.1007/3-540-49424-3

    16. [16]

      Yang S, Ma S, Wang C, Xu J, Zhu M. Aust J Chem, 2014, 67(67):11-21
       

    17. [17]

      Decher G H, Hong J D, Schmitt J D. Thin Solid Films, 1992, 210-211(2):831-835
       

    18. [18]

      Vainas T, Stassen F R M, Bruggeman C A, Welten R J T J, Akker L H J M V d, Kitslaar P J E H M, Peña A S, Morré S A. Macromolecules, 1997, 30(9):2717-2725  doi: 10.1021/ma9700486

    19. [19]

      Wang L, Wang Z, Zhang X, Shen J, Chi L, Fuchs H. Macromol Rapid Commun, 1997, 18(6):509-514  doi: 10.1002/marc.1997.030180609

    20. [20]

      Shimazaki Y, Mitsuishi M, Ito S, Yamamoto M. Langmuir, 1997, 13(6):1385-1387  doi: 10.1021/la9609579

    21. [21]

      Zhang Xi. Acta Polymerica Sinica, 2007, (10):905-912
       

    22. [22]

      Sun Junqi. Acta Polymerica Sinica, 2011, (9):923-931
       

    23. [23]

      Tsuji H, Ikada Y, Hyon S H, Kimura Y, Kitao T. J Appl Polym Sci, 1994, 51(2):337-344  doi: 10.1002/app.1994.070510216

    24. [24]

      Amaike M, Senoo Y, Yamamoto H. Macromol Rapid Commun, 1998, 19(6):287-289  doi: 10.1002/(ISSN)1521-3927

    25. [25]

      Li J, Wang Z, Wen L, Nie J, Yang S, Xu J, Cheng S Z D. ACS Macro Lett, 2016, 5(7):814-818  doi: 10.1021/acsmacrolett.6b00346

    26. [26]

      Wan A C A, Cutiongco M F A, Tai B C U, Leong M F, Lu H F, Yim E K F. Mater Today, 2016, 19(8):437-450  doi: 10.1016/j.mattod.2016.01.017

    27. [27]

      Fuoss R M, Sadek H. Science, 1949, 110(2865):552-554  doi: 10.1126/science.110.2865.552

    28. [28]

      Overbeek J T, Voorn M J. J Cell Physiol, 1957, 49(S1):7-26  doi: 10.1002/(ISSN)1553-0809

    29. [29]

      Gherasim C V, Luelf T, Roth H, Wessling M. ACS Appl Mater Interfaces, 2016, 8(29):19145-19157  doi: 10.1021/acsami.6b05706

    30. [30]

      Ohkawa K, Takahashi Y, Yamamoto H. Macromol Rapid Commun, 2000, 21(5):223-225  doi: 10.1002/(ISSN)1521-3927

    31. [31]

      Yamamoto H, Horita C, Senoo Y, Nishida A, Ohkawa K. J Appl Polym Sci, 2001, 79(3):437-446  doi: 10.1002/(ISSN)1097-4628

    32. [32]

      Nishida A, Yamamoto H, Nishi N. B Chem Soc Jpn, 2004, 77(9):1783-1787  doi: 10.1246/bcsj.77.1783

    33. [33]

      Wan A C A, Meng F L, Toh J K C, Zheng Y, Ying J Y. Adv Healthc Mater, 2012, 1(1):101-105  doi: 10.1002/adhm.201100020

    34. [34]

      Wan A C A, Liao I C, Yim E K F, Leong K W. Macromolecules, 2004, 37(18):7019-7025  doi: 10.1021/ma0498868

    35. [35]

      Sæther H V, Holme H K, Maurstad G, Smidsrød O, Stokke B T. Carbohydr Polym, 2008, 74(4):813-821  doi: 10.1016/j.carbpol.2008.04.048

    36. [36]

      Wan A C, Yim E K, Liao I C, Le V C, Leong K W. J Biomed Mater Res A, 2004, 71(4):586-595
       

    37. [37]

      Liquori A M, Anzuino G, Coiro V M, D'Alagni M, Santis P D, Savino M. Nature, 1965, 206(4982):358-362  doi: 10.1038/206358a0

    38. [38]

      Ikada Y, Jamshidi K, Tsuji H, Hyon S H. Macromolecules, 1987, 20(4):904-906  doi: 10.1021/ma00170a034

    39. [39]

      Takasaki M, Ito H, Kikutani T. J Macromol Sci B, 2003, 42(3-4):403-420
       

    40. [40]

      Furuhashi Y, Kimura Y, Yoshie N, Yamane H. Polymer, 2006, 47(16):5965-5972  doi: 10.1016/j.polymer.2006.06.001

    41. [41]

      Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S A, Mizuno A. Biomacromolecules, 2006, 7(12):3316-3320  doi: 10.1021/bm060786e

    42. [42]

      Zhang P, Tian R, Na B, Lv R, Liu Q. Polymer, 2015, 60:221-227  doi: 10.1016/j.polymer.2015.01.049

    43. [43]

      Lv R, Tian R, Na B, Zhang P, Liu Q X. J Phys Chem B, 2015, 119(50):15530-15535  doi: 10.1021/acs.jpcb.5b09226

    44. [44]

      Dobry M A. Bull Soc Chim Belg, 1948, 57(7-9):280-285

    45. [45]

      Khutoryanskiy V V. Int J Pharm, 2007, 334(1):15-26

    46. [46]

      Kharlampieva E, Sukhishvili S A. J Macromol Sci Part C Polym Rev, 2006, 46(4):377-395  doi: 10.1080/15583720600945386

    47. [47]

      Ma Songmei, Liu Shuyong, Zhang Xuejian, Yang Shuguang, Xu Jian, Acta Polymerica Sinica, 2015, (7):786-791
       

    48. [48]

      Yang S, Zhang Y, Zhang X, Guan Y, Xu J, Zhang X. Chem Phys Chem, 2007, 8(3):418-424  doi: 10.1002/(ISSN)1439-7641

    49. [49]

      Ma S, Qi X, Cao Y, Yang S, Xu J. Polymer, 2013, 54(20):5382-5390  doi: 10.1016/j.polymer.2013.07.047

    50. [50]

      Nie J, Wang Z L, Li J F, Gong Y, Sun J X, Yang S G. Chinese J Polym Sci, 2017, 35(8):1001-1008  doi: 10.1007/s10118-017-1984-8

    51. [51]

      Ma S, Yuan Q, Zhang X, Yang S, Xu J. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2015, 471:411-418
       

    52. [52]

      Pedersen C J. J Am Chem Soc, 1967, 89(26):7017-7036  doi: 10.1021/ja01002a035

    53. [53]

      Harada A, Kamachi M. Macromolecules, 1990, 23(10):2821-2823  doi: 10.1021/ma00212a039

    54. [54]

      Uyar T, Kingshott P, Besenbacher F. Angew Chem, 2008, 47(47):9108-9111  doi: 10.1002/anie.v47:47

    55. [55]

      Narayanan G, Aguda R, Hartman M, Chung C C, Boy R, Gupta B S, Tonelli A E. Biomacromolecules, 2016, 17(1):271-279  doi: 10.1021/acs.biomac.5b01379

    56. [56]

      Zhan J, Anirudha S, Zhang Z, Huang L, Elisseeff J H. Biomatter, 2012, 2(4):202-212  doi: 10.4161/biom.22723

    57. [57]

      Mulliken R S. J Am Chem Soc, 1952, 74(3):811-824  doi: 10.1021/ja01123a067

    58. [58]

      Krol J J, Boerrigter M, Koops G H. J Membr Sci, 2001, 184(2):275-286  doi: 10.1016/S0376-7388(00)00640-2

    59. [59]

      Jiang L Y, Chung T S, Rajagopalan R. Chem Eng Sci, 2008, 63(1):204-216  doi: 10.1016/j.ces.2007.09.026

    60. [60]

      Qin Y. Polym Adv Technol, 2008, 19(1):6-14  doi: 10.1002/(ISSN)1099-1581

    61. [61]

      Kong Q, Guo C, Cheng F, Ji Q, Li Y, Xia Y. Adsorpt Sci Technol, 2010, 28(4):363-375  doi: 10.1260/0263-6174.28.4.363

    62. [62]

      Tian G, Ji Q, Xu D, Tan L, Quan F, Xia Y. Fiber Polym, 2013, 14(5):767-771  doi: 10.1007/s12221-013-0767-2

    63. [63]

      WenLingang, Xu Jiali, Li JieFu, Wang Zhiliang, Yang Shuguang, Journal of Donghua University, 2017, 43:161-167
       

    64. [64]

      Liu Shuyong, Wen Lingang, Wang Zhiliang, Shen Duan, Li Jiefu, Yang Shuguang. Journal of Donghua University, 2016, 33(3):366-369
       

    65. [65]

      Cerrada P, Oriol L, Pinol M, Serrano J L, Alonso P J, Puertolas J A, Iribarren I, Guerra S M. Macromolecules, 1999, 32(11):3565-3573  doi: 10.1021/ma9812837

    66. [66]

      Tonegawa H, Kuboe Y, Amaike M, Nishida A, Ohkawa K, Yamamoto H. Macromol Biosci, 2004, 4(5):503-511  doi: 10.1002/(ISSN)1616-5195

    67. [67]

      Ohkawa K, Shoumura K, Shirakabe Y, Yamamoto H. J Mater Sci, 2003, 38(15):3191-3197  doi: 10.1023/A:1025113332547

    68. [68]

      Yow S Z, Quek C H, Yim E K F, Lim C T, Leong K W. Biomaterials, 2009, 30(6):1133-1142  doi: 10.1016/j.biomaterials.2008.11.003

    69. [69]

      Yow S Z, Lim T H, Yim E K F, Lim C T, Leong K W. Polymers, 2011, 3(1):527-544  doi: 10.3390/polym3010527

    70. [70]

      Granero A J, Razal J M, Wallace G G, Panhuis M I H. Macromol Biosci, 2009, 9(4):354-360  doi: 10.1002/mabi.v9:4

    71. [71]

      Granero A J, Razal J M, Wallace G G, Panhuis M I H. Adv Funct Mater, 2008, 18(23):3759-3764  doi: 10.1002/adfm.v18:23

    72. [72]

      Razdan S, Patra P K, Kar S, Ci L, Vajtai R, Kukovecz A, Konya Z, Kiricsi I, Ajayan P M. Chem Mater, 2009, 21(14):3062-3071  doi: 10.1021/cm803060d

    73. [73]

      Wang F, Liu Z, Wang B, Feng L, Liu L, Lv F, Wang Y, Wang S. Angew Chem Int Ed, 2014, 53(2):424-428  doi: 10.1002/anie.v53.2

    74. [74]

      Spasova M, Manolova N, Paneva D, Mincheva R, Dubois P, Rashkov I, Maximova V, Danchev D. Biomacromolecules, 2010, 11(1):151-159  doi: 10.1021/bm901016y

    75. [75]

      Takahashi Y, Ohkawa K, Ando M, Yamada M, Yamamoto H. Macromol Mater Eng, 2001, 286(12):733-736  doi: 10.1002/1439-2054(20011201)286:12<733::AID-MAME733>3.0.CO;2-I

    76. [76]

      Liao I C, Wan A C A, Yim E K F, Leong K W. J Control Release, 2005, 104(2):347-358  doi: 10.1016/j.jconrel.2005.02.013

    77. [77]

      Wan A C A, Tai B C U, Leck K J, Ying J Y. Adv Mater, 2006, 18(5):641-644  doi: 10.1002/(ISSN)1521-4095

    78. [78]

      Tai B C U, Wan A C A, Ying J Y. Biomaterials, 2010, 31(23):5927-5935  doi: 10.1016/j.biomaterials.2010.04.003

    79. [79]

      Tai B C, Du C, Gao S, Wan A C, Ying J Y. Biomaterials, 2010, 31(1):48-57  doi: 10.1016/j.biomaterials.2009.09.022

    80. [80]

      Leong M F, Toh J K, Du C, Narayanan K, Lu H F, Lim T C, Wan A C, Ying J Y. Nat Commun, 2013, 4:2353-2360
       

    81. [81]

      Cutiongco M F A, Choo R K T, Shen N J X, Chua B M X, Sju E, Choo A W L, Visage C L, Yim E K F. Front Bioeng Biotech, 2015, 3:1-12
       

    82. [82]

      Cutiongco M F A, Tan M H, Ng M Y, Le V C, Yim E K. Acta Biomater, 2014, 10(10):4410-4418  doi: 10.1016/j.actbio.2014.06.029

    83. [83]

      Raghothaman D, Leong M F, Lim T C, Toh J K C, Wan A C A, Yang Z, Lee E H. Biomaterials, 2014, 35(9):2607-2616  doi: 10.1016/j.biomaterials.2013.12.008

    84. [84]

      Teo B K, Tan G D, Yim E K. Tissue Eng A, 2014, 20(15-16):2151-2161  doi: 10.1089/ten.tea.2013.0382

    85. [85]

      Sharma J, Zhang X, Sarker T, Yan X, Washburn L, Qu H, Guo Z, Kucknoor A, Wei S. Polymer, 2014, 55(15):3261-3269  doi: 10.1016/j.polymer.2014.05.028

    86. [86]

      Monticelli O, Putti M, Gardella L, Cavallo D, Basso A, Prato M, Nitti S. Macromolecules, 2014, 47(14):4718-4727  doi: 10.1021/ma500528a

  • 加载中
    1. [1]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    2. [2]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    3. [3]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    4. [4]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    5. [5]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    8. [8]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    12. [12]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    15. [15]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(0)
  • Abstract views(187)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return