Citation: Chao Li, Zhong-yi Yuan, You-di Zhang, Chun-sheng Cai, Yu Hu, Yi-wang Chen. Semi-perfluoroalkylated Soluble Conjugated Polymers Based on Naphthalene Diimides[J]. Acta Polymerica Sinica, ;2018, 0(6): 712-720. doi: 10.11777/j.issn1000-3304.2017.17245 shu

Semi-perfluoroalkylated Soluble Conjugated Polymers Based on Naphthalene Diimides

  • Corresponding author: Zhong-yi Yuan,  Yi-wang Chen, yuan@ncu.edu.cn;ywchen@ncu.edu.cn
  • Received Date: 28 August 2017
    Revised Date: 14 October 2017
    Available Online: 1 March 2018

  • Naphthalene diimides (NDIs) as excellent organic semiconductors are difficult to be synthesized, because it is difficult to separate the key intermediate 2,6-dibromo-NDI from 2-bromo-NDI. A highly efficient synthesis of 2,6-dibromo-NDI was developed in this work. Perfluoroalkylated NDIs are excellent electron transport materials, while they are unsuitable for solution process because of their poor solubility. Since semi-perfluoroalkylated conjugated compounds have much better solubility than their perfluoroalkylated counterparts, different semi-perfluoroalkyl groups were introduced to the N-terminals of NDIs, and six conjugated polymers with donor-acceptor structure were synthesized by multi-step reactions. The chemical structure, optical properties, electrochemical properties, thermal stability, contact angle, and self-assembly properties of the target polymers were studied. The results demonstrate that suitable semi-pefluoroalkyl groups are critical to the synthesis of the soluble polymers. All these polymers are readily soluble in organic solvents. Solid absorption of these polymers red-shifts compared to their solution absorption, indicating aggregation in solid state. The absorption red-shifts obviously by increasing electron donating ability of the donor unit. The optical bandgaps of the semi-perfluoroalkylated polymers are 0.3 eV lower than those of the regular polymers. The LUMO energy levels of these polymers are as low as −3.84 ~ −3.90 eV, indicating their strong electron accepting ability. The LUMO energy levels of the semi-perfluoroalkylated polymers are about 0.1 eV lower than those of NDI polymers with regular alkyl groups, which is attributed to the strong electron-withdrawing properties of their fluorine atoms. With simple spin-coating and evaporation, the polymer P5 can be self-assembled into ordered fibers with 500 nm in length and 30 nm in width, which is in favor of charge transfer. All these polymers have good thermal stability with their decomposing temperature above 375 °C. Their higher fluorine ratio and higher contact angles are the reflection of their water repellent properties. The mobility of these polymers is measured with space charge-limiting current (SCLC) method using the device structure of ITO/ZnO/polymer/Al, and all these polymers prove to be electron transporting materials.
  • 加载中
    1. [1]

      Culloch I M, Heeney M, Bailey C, Genevicius K, Donald I M, Shkunov M, Spatrowe D, Tierney S, Wagner R, Zhang W M, Michael L, Kline R J, Michael D, Mcgehee M D, Toney M F. Nat Mater, 2006, 5: 328-333  doi: 10.1038/nmat1612

    2. [2]

    3. [3]

      Kang B, Lim S, Lee W H, Jo S B, Cho K. Adv Mater, 2013, 25: 5856-5862  doi: 10.1002/adma.201302358

    4. [4]

    5. [5]

    6. [6]

      Cho J H, Lee J, Xia Y, Kim B S, He Y Y, Renn M J, Frisbie T P. Nat Mater, 2008, 7: 900-906  doi: 10.1038/nmat2291

    7. [7]

      Kang B, Jang M, Chung Y, Kim H, Sang K K, Joon K O, Cho K. Nat Commun, 2014, 5: 4752-4758  doi: 10.1038/ncomms5752

    8. [8]

      Chou K W, Yan B Y, Li R P, Li E Q, Zhao K, Dalaver H A, Steven A, Robert G, Alan B, Sigurdur T T, Hexemer A, Aram A. Adv Mater, 2013, 25: 1923-1929  doi: 10.1002/adma.v25.13

    9. [9]

    10. [10]

    11. [11]

      Hunter S, Chen J, Anthopoulos T D. Adv Funct Mater, 2014, 24: 5969-5976  doi: 10.1002/adfm.201401087

    12. [12]

      Katz H E, Johnson J, Lovinger A J, Li W J. J Am Chem Soc, 2000, 122: 7787-7792  doi: 10.1021/ja000870g

    13. [13]

      Katz H E, Lovinger A J, Johnson J, Kloc C, Li W, Lin Y Y, Dodabalapur A. Nature, 2000, 404: 478-481  doi: 10.1038/35006603

    14. [14]

      Zhang F J, Hu Y B, Torben S, Di C A, Gao K X, Christopher R M, Thomsen L, Stefan C B, Yuan W, Henning S, Zhu D B. J Am Chem Soc, 2013, 135: 2338-2349  doi: 10.1021/ja311469y

    15. [15]

      Lee C Y, Kang H B, Lee W H, Kim K H, Woo H Y, Wang C, Kim B J. Adv Mater, 2015, 27: 2466-2471  doi: 10.1002/adma.201405226

    16. [16]

      Bhosale S V, Jani C H, Langford S J. Chem Soc Rev, 2008, 37: 331-342  doi: 10.1039/B615857A

    17. [17]

      Lei T, Wang J Y, Pei J. Chem Mater, 2014, 26: 594-603  doi: 10.1021/cm4018776

    18. [18]

      Mei J G, Bao Z N. Chem Mater, 2014, 26: 604-615  doi: 10.1021/cm4020805

    19. [19]

      Cheng X H, Prehm M, Das M K, Kain S, Baumeister U, Diele S, Leine D, Blume A, Tschierske C. J Am Chem Soc, 2003, 125: 10977-10996  doi: 10.1021/ja036213g

    20. [20]

      Clark C G, Floudas G A, Lee Y J, Graf R, Spiess H W, Mullen K. J Am Chem Soc, 2009, 131: 8537-8547  doi: 10.1021/ja900999f

    21. [21]

      Kang B, Kim R, Lee S B, Kwon S K, Kim Y H, Cho K. J Am Chem Soc, 2016, 138: 3679-3686  doi: 10.1021/jacs.5b10445

    22. [22]

      Lee W, Lee C, Yu H, Kim D J, Wang C, Woo H Y, Kim B J . Adv Funct Mater, 2016, 26: 1543- 1553  doi: 10.1002/adfm.v26.10

    23. [23]

      Zong L, Xie Y, Wang C, Li J M, Li Q, Li Z. Chem Commun, 2016, 52: 11496-11499  doi: 10.1039/C6CC06176A

    24. [24]

      Jung B J, Lee K, Sun J, Andreou A G, Katz H E. Adv Funct Mater, 2010, 20: 2930- 2944  doi: 10.1002/adfm.201000655

    25. [25]

      Banikhaled M O, Becker J D, Koppang M, Sun H R. Cryst Growth Des, 2016, 16:1869-1878  doi: 10.1021/acs.cgd.5b01291

    26. [26]

      Cai C S, Wan J, Zhang Y D, Yuan Q F, Xu G D, Hu Y, Zhao X H, Chen Y W, J Polym Sci, Part A: Polym Chem, 2018, 56: 116-124  doi: 10.1002/pola.v56.1

    27. [27]

      Xiong K, Xiao Y. Tetrahedron Lett, 2013, 54: 3171- 3175  doi: 10.1016/j.tetlet.2013.04.030

    28. [28]

      Chen Z H, Zheng Y, Yan H, Facchetti A. J Am Chem Soc, 2009, 131: 8-9  doi: 10.1021/ja805407g

    29. [29]

      Gou X G, Watson M D. Org Lett, 2008, 10: 5333-5336  doi: 10.1021/ol801918y

    30. [30]

      Yan H, Chen Z H, Zheng Y, Newan C, Quinn J R, Kastler M, Facchetti A. Nature, 2009, 457: 679-686  doi: 10.1038/nature07727

    31. [31]

      Durban M M, Christine K L, Peter D K. Macromolecules, 2010, 43: 6348-6352  doi: 10.1021/ma100997g

    32. [32]

      Choi J, Kim K H, Yu H, Lee C, Kang H, Song I, Kim Y, Oh J H, Kim B. Chem Mater, 2015, 27: 5230-5237  doi: 10.1021/acs.chemmater.5b01274

    33. [33]

      Sirringhaus H, Tessler N, Friend R H. Science, 1998, 280: 1741-1744  doi: 10.1126/science.280.5370.1741

    34. [34]

      Y Zhou,Q Yan, D Zhao, J Pei. J Mater Chem, 2013, 1: 6609-6613  doi: 10.1039/c3ta10864c

    35. [35]

      Cheng Y J, Hsieh C H, Li P J, Hsu C S. Adv Funct Mater, 2011, 21: 1723-1732  doi: 10.1002/adfm.201002502

  • 加载中
    1. [1]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    4. [4]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    9. [9]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    15. [15]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(0)
  • Abstract views(134)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return