Citation: Zhen-an Wang, Nan Li, Wang-yang Lu, Wen-xing Chen. Highly-efficient Fabrication and Crystallinity and Orientation of Polyacrylonitrile Nanofibers[J]. Acta Polymerica Sinica, ;2018, 0(6): 755-764. doi: 10.11777/j.issn1000-3304.2017.17226 shu

Highly-efficient Fabrication and Crystallinity and Orientation of Polyacrylonitrile Nanofibers

  • Corresponding author: Nan Li, linan@zstu.edu.cn Wen-xing Chen, wxchen@zstu.edu.cn
  • Received Date: 14 August 2017
    Revised Date: 21 September 2017
    Available Online: 1 March 2018

  • Polyacrylonitrile (PAN) precursor nanofibers are prepared by traditional electrospinning and the centrifugal spinning, respectively. The nanofiber bundles are drawn in hot air with a constant force into 1 and 3 times of the original length. Subsequently, the crystalline structure, orientation, morphology, diameter of PAN nanofibers before and after drawing treatment were characterized by WAXD and SEM. The results show that: (1) the efficiency of centrifugal-electrospinning is far higher (120 times) than that of electrospinning (fluid flow rate of centrifugal-electrospinning: 2 mL/min, fluid flow rate of electrospinning: 1 mL/h). (2) Despite a low crystallinity from centrifugal spinning or electrospinning (the crystallinity of the PAN nanofiber precursor by centrifugal spinning is 25%, while that by electrospinning is 10.6%). PAN precursor nanofibers prepared by centrifugal spinning have certain orientation (60.5%); while those prepared by electrospinning have almost no orientation; (3) Hot-air-drawing with a constant force (1.00 N) contributes to a higher crystallinity (centrifugal spinning: 45.8%, electrospinning: 36.2%) and orientation (centrifugal spinning: 72.5%, electrospinning: 59.8%) for the PAN nanofibers. Moreover, increased drawing temperature and force results in a decrease in the diameter of the PAN nanofiber bundles (the diameter of PAN nanofibers prepared by centrifugal spinning decreases from 675 nm to 510 nm; while that by electrospinning decreases from 460 nm to 355 nm). Compared with the slight effect of the spinning process on crystalline structure and orientation, the hot-air drawing treatment significantly promotes the crystalline and orientation. The centrifugal force is helpful to eliminate the whip phenomenon and to make a full drawing of jet flow, finally leading to a higher certain orientation for the polymer chains of PAN nanofibers.
  • 加载中
    1. [1]

      Nataraj S K, Yang K S, Aminabhavi T M . Prog Polym Sci, 2012, 37(3): 487-513  doi: 10.1016/j.progpolymsci.2011.07.001

    2. [2]

      Morgan P. Carbon Fibers and Their Composites. Boca Raton: CRC Press, 2005.185-267

    3. [3]

      Yan H, Park S H, Finkelstein G, Reif J H, Labean T H. Science, 2003, 301: 1882-1884  doi: 10.1126/science.1089389

    4. [4]

      Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker D H, Fong H. Polymer, 2009, (50) 2999-3006

    5. [5]

      Raa E J, Pineroa E R, Lee Y H, Beguin F. Carbon, 2009, (47)2984-2992

    6. [6]

      Saeed K, Haider S, Oh T J, Park S Y. J Membr Sci, 2008, 322(2): 400-405

    7. [7]

      Kai D, Prabhakaran M P, Jin G R, Ramakrishna S. J Biomed Mater Res B, 2011(98): 379-386

    8. [8]

      Yin Z, Chen X, Chen J L, Shen W L, Nguyen T M H, Gao L, Ouyang H W. Biomaterials, 2010(31): 2163-75

    9. [9]

      Teo W E, Ramakrishna S. Nanotechnology, 2006(17): 89-106

    10. [10]

      Chen D, Miao Y, Liu T. ACS Appl Mater Interfaces, 2013(5): 1206-1212

    11. [11]

      Chen D, Wang R Y, Tjiu W W , Liu T. Compos Sci Technol, 2011(71): 1556-1562

    12. [12]

      Tamura T, Kawakami H. Nano Lett, 2010(10): 1324-1328

    13. [13]

      Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers J. Nat Commun, 2013(4): 1633-1642

    14. [14]

      McEachin Z, Lozano K. J Appl Polym Sci, 2012, 126(2): 473-479  doi: 10.1002/app.v126.2

    15. [15]

      Zhang X, Lu Y. Polym Rev, 2014, 54(4): 677-701  doi: 10.1080/15583724.2014.935858

    16. [16]

      Senthilram T, Mary L A, Venugopal J R, Nagarajan L, Ramakrishna S, Dev V R G. Mater Today, 2011, 14(5): 226-229  doi: 10.1016/S1369-7021(11)70118-3

    17. [17]

      Sarkar K, Gomez C, Zambrano S, Ramirez R, Hoyos E, Vasquez H, Lozano K. Mater Today, 2010, 13(11)

    18. [18]

      Taghavi S M, Larson R G. Phys Rev E, 2014, 89(2): 023011  doi: 10.1103/PhysRevE.89.023011

    19. [19]

      Mellado P, Mcilwee H A, Badrossamay M R, Goss J A, Mahadevan L, Parker K K. Appl Phys Lett, 2011, 99(20): 203107  doi: 10.1063/1.3662015

    20. [20]

      Lu Y, Li Y, Zhang S, Xu G, Fu K, Lee H, Zhang H. Eur Polym J, 2013, 49(12): 3834-3845  doi: 10.1016/j.eurpolymj.2013.09.017

    21. [21]

      Hammami M A, Krifa M, Harzallah O. J TEXT I, 2014, 105(6): 637-647  doi: 10.1080/00405000.2013.842680

    22. [22]

      Sebe I, Szabo B, Nagy Z K, Szabo D, Zsidai L, Kocsis B, Zelko R. Int J Pharm, 2013, 458(1): 99-103  doi: 10.1016/j.ijpharm.2013.10.011

    23. [23]

      Zander N E. J Appl Polym Sci, 2015, 32(2): 41269

    24. [24]

      Bharath R, Haidy S, Karen L. J Eng Fiber Fabr, 2013, 8(1): 52-60

    25. [25]

      Badrossamay M R, McIlwee H A, Goss J A, Parker K K. Nano Lett, 2010, 10(6): 2257-2261  doi: 10.1021/nl101355x

    26. [26]

      Weng B, Xu F, Salinas A, Lozano K. Carbon, 2014, 75(8): 217-226

    27. [27]

      Mary L A, Senthilram T Suganya S, Nagarajan J, Venugopal J, Ramakrishna S, Dev V R G. Express Polym Lett, 2013, 7(3): 238-248  doi: 10.3144/expresspolymlett.2013.22

    28. [28]

      Greiner A, Joachim H. Angew Chem Int Ed, 2007, 46(30): 5670-5703  doi: 10.1002/(ISSN)1521-3773

    29. [29]

      Altecor A, Li Q, Lozano K, Mao Y. Ceram Int, 2014, 40(3) : 5073-5077  doi: 10.1016/j.ceramint.2013.09.067

    30. [30]

      Fong H. Polymeric Nanostructures and Their Applications. Stevenson Ranch: American Scientific Publishers, CA, 2007. 451-474

    31. [31]

      Liu J, Yue Z R, Fong H. Small, 2009, 5(5): 536-542  doi: 10.1002/smll.v5:5

    32. [32]

      Liu L, Chen G, Gao H, Zhang L F, Ma S, Liang J Y, Fong H. Carbon, 2012, 50(3) : 1262-1270  doi: 10.1016/j.carbon.2011.10.046

    33. [33]

      Zussman E, Chen X, Ding W, Calabri L, Dikin D A, Quintana J P, Ruoff R S. Carbon, 2005, 43(10): 2175-2185  doi: 10.1016/j.carbon.2005.03.031

    34. [34]

      Zhou Z P, Lai C L, Zhang L F, Qian Y, Hou H Q, Reneker D H, Fong H. Polymer, 2009, 50(13): 2999-3006  doi: 10.1016/j.polymer.2009.04.058

    35. [35]

      Kalayci V E, Patra P K, Kim Y K, Ugbolue S C, Warner S B. Polymer, 2005, 46(18): 7191-7200  doi: 10.1016/j.polymer.2005.06.041

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    5. [5]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    15. [15]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Caiyun Jin Zexuan Wu Guopeng Li Zhan Luo Nian-Wu Li . 用于金属锂电池的磷腈基阻燃人工界面层. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-. doi: 10.1016/j.actphy.2025.100094

Metrics
  • PDF Downloads(0)
  • Abstract views(179)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return