Citation: Meng-juan Wei, Qi Zhang, Hang-tian Zhang, Yi-xian Wu. In situ Preparation and Properties of Poly(γ-benzyl-L-glutamate)-g-(polytetrahydrofuran-b-polyisobutylene)/Ag Nanocomposites via Cationic Polymerization[J]. Acta Polymerica Sinica, ;2018, (4): 464-474. doi: 10.11777/j.issn1000-3304.2017.17130 shu

In situ Preparation and Properties of Poly(γ-benzyl-L-glutamate)-g-(polytetrahydrofuran-b-polyisobutylene)/Ag Nanocomposites via Cationic Polymerization

  • Corresponding author: Yi-xian Wu, wuyx@mail.buct.edu.cn
  • Received Date: 12 May 2017
    Revised Date: 22 May 2017

  • The living cationic ring opening polymerization of tetrahydrofuran (THF) was carried out using polyisobulylene with functional terminal group (PIB-AllylBr) as a macroinitiator in the presence of AgClO4 to synthesize PIB-b-PTHF living polymer chains. And then, the novel PBLG-g-(PTHF-b-PIB) block graft copolymer/silver (Ag) nanocomposites were in situ prepared via grafting the living polymer chains onto poly(γ-benzyl-L-glutamate) (PBLG) backbone. Several PBLG-g-(PTHF-b-PIB)/Ag nanocomposites with different grafting densities and average branch lengths have been achieved. The effect of grafting density on the surface morphology and self-assembly behavior of PBLG-g-(PTHF-b-PIB)/Ag nanocomposites was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The effects of grafting density and average branch length on the drug loading and release behavior were studied using ibuprofen (IBU) as a mimetic drug. The content, distribution, crystal form and morphology of nano-silver in nanocomposites were investigated by thermogravimetric analysis (TGA), UV-Vis spectroscopy (XPS), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The content of nano-silver in the above nanocomposites was ranged from 0.25% to 3.9%, which coincided with the theoretical content of nano-silver. The crystal form of nano-silver was face-centered cubic structure as observed by XRD test. The size of the nano-silver particles was ranged from 5 nm to 10 nm, estimated by HRTEM, and the obvious diffraction fringes were observed. The water contact angle of the above nanocomposite films increased from 96° to 118° with an increase in grafting density from 15% to 45%, and with that in nano-silver content from 0.45% to 1.48%. PBLG-g-(PTHF-b-PIB)/Ag/IBU microspheres were found to be well drug-loaded with ibuprofen as mimetic drug, attributed to the α-helical secondary structure in PBLG backbone in the middle, the amide bond in PBLG backbone and the ether bond in PTHF segments. Both drug loading and cumulative release rate increased with increasing grafting density or length of PTHF segment. The release rate at 37℃ was around 3 times of that at 25℃ for the same copolymer. No cytotoxicity of the nanocomposite was found by MTT assay since the cell viability was 97.7% after one week with the content of nano-silver of 1.48%. Antimicrobial experiments were performed on PBLG-g-(PTHF-b-PIB)/Ag nanocomposites by antibacterial ring method and the results showed that these nanocomposites demonstrated excellent antibacterial activity.
  • 加载中
    1. [1]

      Aoi K, Okada M. Prog Polym Sci, 1996, 21:151-208  doi: 10.1016/0079-6700(95)00020-8

    2. [2]

      Lee S C, Chang Y, Yoon J S, Kim C, Kwon I C, Kim Y H, Jeong S Y. Macromolecules, 1999, 32(6):1847-1852  doi: 10.1021/ma981664k

    3. [3]

      Weberskirch R, Hettich R, Nuyken O, Schmaljohann D, Voit B. Macromol Chem Phys, 1999, 200(4):863-873  doi: 10.1002/(ISSN)1521-3935

    4. [4]

      Langer R. Acc Chem Res, 2000, 33(2):94-101  doi: 10.1021/ar9800993

    5. [5]

      Gombotz W R, Pettit D K. Bioconjugate Chem, 1995, 6(4):332-351  doi: 10.1021/bc00034a002

    6. [6]

      Thambi T, Deepagan V G, Chang K Y. Polymer, 2011, 52(21):4753-4759  doi: 10.1016/j.polymer.2011.08.024

    7. [7]

      Zhang Suning, Chen Tao, Lin Jiaping, Dong Xiubin, Lin Shaoliang. Acta Polymerica Sinica, 2005, (6):929-932
       

    8. [8]

      Tang D M, Lin J P, Lin S L, Zhang S N, Chen T, Tian X H. Macromol Rapid Commun, 2004, 25:1241-1246  doi: 10.1002/(ISSN)1521-3927

    9. [9]

      Mu C G, Fan X D, Tian W, Bai Y, Yang Z, Fan W W, Chen H. Polym Chem, 2012, 3:3330-3339  doi: 10.1039/c2py20586f

    10. [10]

      Matyjaszewski K. New York: Marcel Dekker, 1996. 521-523

    11. [11]

      Guo A R, Yang F, Yu R, Wu Y X. Chinese J Polym Sci, 2015, 33(1):23-35  doi: 10.1007/s10118-015-1571-9

    12. [12]

      Cheradame H, Sassatelli M, Pomel C, Sanh A, Gau-Racine J, Bacri L, Auvray L, Guegan P. Macromol Symp, 2008, 261:167-181  doi: 10.1002/(ISSN)1521-3900

    13. [13]

      Rueda L L, D'Arlas B F, Eur Polym J, 2009, 45(7):2096-2109  doi: 10.1016/j.eurpolymj.2009.03.013

    14. [14]

      Goethals E J, Dubreuil M F, Tanghe L. Macromol Symp, 2000, 161:135-140  doi: 10.1002/(ISSN)1521-3900

    15. [15]

      Guo A R, Yang W X, Yang F, Yu R, Wu Y X. Macromolecules, 2014, 47:5450-5461  doi: 10.1021/ma501060y

    16. [16]

      Kennedy J P. J Polym Sci, Part A:Polym Chem, 2005, 43(14):2951-2963  doi: 10.1002/(ISSN)1099-0518

    17. [17]

      Wei Mengjuan, Guo Anru, Wu Yixian. Acta Polymerica Sinica, 2017, (3):506-515
       

    18. [18]

      Vukomanović M, Repnik U, Zavašnikbergant T. ACS Biomater Sci Eng, 2015, 1(10):935-946  doi: 10.1021/acsbiomaterials.5b00170

    19. [19]

      Tobaldi D M, Piccirillo C, Pullar R C. J Phys Chem C, 2014, 118(9):137-146
       

    20. [20]

      Kahveci M U, Yagci Y. Macromolecules, 2011, 44(14):5569-5572  doi: 10.1021/ma200783x

    21. [21]

      Kasapoglu F, Yagci Y. Macromol Rapid Commun, 2002, 23(9):567-570  doi: 10.1002/1521-3927(20020601)23:9<567::AID-MARC567>3.0.CO;2-8

    22. [22]

      Nehlig E, Schneider R, Vidal L, Balan L. Langmuir, 2012, 28(51):17795-17802  doi: 10.1021/la303923p

    23. [23]

      Tehfe M A, Jamois R, Cousin P, Elkoun S, Robert M. Langmuir, 2015, 31(14):4305-4313  doi: 10.1021/la504518c

    24. [24]

      Li Y D, He Y P. Chinese J Chem Phys, 1999, (4):465-468

    25. [25]

      Mbhele Z H, Salemane M G, van Sittert C, Nedeljkovic J M, Djokovic V, Luyt A S. Chem Mater, 2003, 15:5019-5024  doi: 10.1021/cm034505a

    26. [26]

      Compton J, Thompson, D, Kranbuehl D, Ohl S, Gain O, David L, Espuche E. Polymer, 2006, 47:5303-5313  doi: 10.1016/j.polymer.2006.05.048

    27. [27]

      Eksik O, Tasdelen M A, Erciyes A T, Yagci Y. Compos Interfaces, 2010, 17:357-369  doi: 10.1163/092764410X495289

    28. [28]

      Balan L, Malval J P, Schneider R, Le Nouen D, Lougnot D J. Polymer, 2010, 51:1363-1369  doi: 10.1016/j.polymer.2009.05.003

    29. [29]

      Destaye A G, Lin C K, Lee C K. ACS Applied Mater Interfaces, 2013, 5(11):4745-4752  doi: 10.1021/am401730x

    30. [30]

      Wei Q B, Fu F, Zhang Y Q. Adv Polym Technol, 2013, 32:624-632  doi: 10.1002/adv.v32.1s

    31. [31]

    32. [32]

      Yan P F, Guo A R, Liu Q, Wu Y X. J Polym Sci, Part A:Polym Chem, 2012, 50(16):3383-3392  doi: 10.1002/pola.v50.16

    33. [33]

      Wu Yixian, Zhou Qi, Du Jie, Wang Nan. Acta Polymerica Sinica, 2017, (3):1047-1057
       

    34. [34]

      Ojha U, Rajkhowa R, Agnihotra S R, Faust R. Macromolecules, 2008, 41(11):3832-3841  doi: 10.1021/ma7027209

    35. [35]

      Tan Dexin, Wang Yanli, Xu Guocai. Chinese J Inorg Chem, 2006, 22(10):1921-1922  doi: 10.3321/j.issn:1001-4861.2006.10.037

    36. [36]

      Aleksandra N. Krklješ, Milena T. Marinović-Cincović, Zorica M. Kacarevic-Popovic. Eur Polym J, 2007, 43(6):2171-2176  doi: 10.1016/j.eurpolymj.2007.03.023

  • 加载中
    1. [1]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    2. [2]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    3. [3]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(0)
  • Abstract views(162)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return