Citation: Han Zhu, Xun Da, Chen Lu, Yi-xian Wu. Isothermal Crystallization Kinetics and Crystal Morphology of Polybutadiene/Silica Hybrid Materials[J]. Acta Polymerica Sinica, ;2018, 0(5): 656-664. doi: 10.11777/j.issn1000-3004.2017.170241 shu

Isothermal Crystallization Kinetics and Crystal Morphology of Polybutadiene/Silica Hybrid Materials

  • Corresponding author: Yi-xian Wu, wuyx@mail.buct.edu.cn
  • Received Date: 27 August 2017
    Revised Date: 29 September 2017
    Available Online: 1 March 2018

  • Effect of SiO2 content on cis-1,4 microstructure content of butadiene (Bd) units, intrinsic viscosity ([η]) and thermal stability of hybrid materials (PB-Si) were studied, in which SiO2 nanoparticles were covalently attached and pendants along high cis polybutadiene (PB) macromolecular chains. Isothermal crystallization characteristics and SiO2 dispersion in PB matrix of PB-Si hybrid and PB/SiO2 blend (PB/Si) with the same SiO2 contents were conducted. The microstructure of Bd units in PB-Si was characterized by Fourier transform infrared spectroscopy (FTIR) and the cis-1,4 content was determined based on the characteristic absorption in FTIR spectrum. The SiO2 content of PB-Si was measured by thermal gravimetric analysis (TGA). The intrinsic viscosity of PB-Si in toluene was tested by Ubbelohde viscometer. Effects of SiO2 content and microstructure (cis -1,4 configuration) on the isothermal crystallization kinetics, crystal morphology and spherulite growth rate of the hybrid materials at low temperatures were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) equipped with in situ heating and cooling device. The results show that the intrinsic viscosity and the cis-1,4 contents of Bd units of PB-Si remained almost the same, and thermal stability could be improved with increasing SiO2 content in the materials when SiO2 content was less than 2.5%. For two series of PB-Si-Ni and PB-Si-Nd hybrids, their cis-1,4 contents were determined to be around 96.6% and 98.6% respectively. PB-Si hybrid materials exhibited a much higher crystallization rate compared to PB/Si blends by keeping the cis-1,4 contents and SiO2 content at the same. The crystallization rate increased by introducing a small amount of covalently linked SiO2 nanoparticle pendants along the macromolecular chains. The crystallization of PB-Si hybrid materials could be accelerated and the half-crystallization time (t1/2) decreased with increasing SiO2 content. PB-Si-Nd hybrid materials with highly linear chains possessed a higher crystallization rate than PB-Si-Ni with short branched chains by keeping cis-1,4 content and SiO2 at the same. The crystallization rate of PB-Si-Nd hybrid materials could be further increased with increasing both SiO2 and cis-1,4 contents. The Avrami exponents (n) for PB-Si hybrid materials with various topological structures were determined to be in the range of 2.0 − 3.0, which indicated a three-dimensional spherulite growth of PB-Si under isothermal condition at low crystallization temperature. The growth rate of spherulites increased with the increase in SiO 2 content while keeping other conditions almost the same. The crystallization rate could increase with increased cis-1,4 content, linearity of chain structure and SiO2 content.
  • 加载中
    1. [1]

      Zhu H, Chen P, Yang C F, Wu Y X. Macromol React Eng, 2015, 9(5): 453-461  doi: 10.1002/mren.v9.5

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

      Mitchell J C. Polymer, 1967, 8(2): 369-379

    9. [9]

    10. [10]

      Cheng T L, Su A C. Macromolecules, 1993, 26(26): 7161-7166  doi: 10.1021/ma00078a008

    11. [11]

      Cheng T L, Su A C. Polymer, 1995, 36(1): 73-80  doi: 10.1016/0032-3861(95)90677-T

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

      Hashimoto T, Saijo K, Kosc M, Kawai H, Wasiak A, Ziabicki A. Macromolecules, 1985, 18(3): 472-482  doi: 10.1021/ma00145a029

    17. [17]

      Saijo K, Zhu Y P, Hashimoto T, Wasiak A, Brzostowski N. J App Polym Sci, 2007, 105(1): 137-157  doi: 10.1002/(ISSN)1097-4628

    18. [18]

      Petermann J, Xu Y. Colloid Polym Sci, 1991, 269(5): 455-459  doi: 10.1007/BF00655882

    19. [19]

      Nakajima N, Yamaguchi Y. J Appl Polym Sci, 1996, 62(13): 2329-2339  doi: 10.1002/(ISSN)1097-4628

    20. [20]

      Doan V A, Nobukawa S, Ohtsubo S, Tada T, Yamaguchi M. J Appl Polym Sci, 2013, 128(3): 1848-1853

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

      Panicker S S, Ninan K N. Thermochimica Acta, 1997, 290(2): 191-197  doi: 10.1016/S0040-6031(96)03083-3

    26. [26]

    27. [27]

    28. [28]

  • 加载中
    1. [1]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(0)
  • Abstract views(117)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return