Application of topology-based structure feature for machine learning in material science

Shisheng Zheng Haowen Ding Shunning Li Dong Chen Feng PanShisheng Zheng Haowen Ding Shunning Li Dong Chen Feng Pan

引用本文: Shisheng Zheng, Haowen Ding, Shunning Li, Dong Chen, Feng PanShisheng Zheng, Haowen Ding, Shunning Li, Dong Chen, Feng Pan. Application of topology-based structure feature for machine learning in material science[J]. Chinese Journal of Structural Chemistry, 2023, 42(7): 100120. doi: 10.1016/j.cjsc.2023.100120 shu
Citation:  Shisheng Zheng,  Haowen Ding,  Shunning Li,  Dong Chen,  Feng PanShisheng Zheng,  Haowen Ding,  Shunning Li,  Dong Chen,  Feng Pan. Application of topology-based structure feature for machine learning in material science[J]. Chinese Journal of Structural Chemistry, 2023, 42(7): 100120. doi: 10.1016/j.cjsc.2023.100120 shu

Application of topology-based structure feature for machine learning in material science

摘要: Structure features play an important role in machine learning models for the materials investigation. Here, two topology-based features for the representation of material structure, specifically structure graph and algebraic topology, are introduced. We present the fundamental mathematical concepts underlying these techniques and how they encode material properties. Furthermore, we discuss the practical applications and enhancements of these feature made in specific material predicting tasks. This review may provide suggestions on the selection of suitable structural features and inspire creativity in developing robust descriptors for diverse applications.

English


  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  678
  • HTML全文浏览量:  62
文章相关
  • 发布日期:  2023-07-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章