Citation: Cheng Wang, Li Zhou, Zhenghao Fei, Yanqing Wang, Yukou Du. Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction[J]. Chinese Chemical Letters, ;2025, 36(12): 111746. doi: 10.1016/j.cclet.2025.111746 shu

Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction

    * Corresponding authors.
    E-mail addresses: wcheng773831229@163.com (C. Wang), duyk@suda.edu.cn (Y. Du).
  • Received Date: 11 May 2025
    Revised Date: 19 August 2025
    Accepted Date: 20 August 2025
    Available Online: 21 August 2025

Figures(17)

  • Ni-based materials, widely recognized for their exceptional catalytic properties, experience structural transformations that profoundly influence their performance characteristics and operational stability. To deeply understand the reconstruction mechanism of Ni-based catalysts, this review systematically summarizes the advanced strategies tailoring the dynamic reconstruction process, including electrochemical activation, defect engineering, partial etching, ionic doping, and heterostructure construction. Furthermore, we discuss the implications of these surface transformations on catalytic activity, highlighting their role in optimizing reaction pathways and enhancing overall efficiency in various electrooxidation reactions, such as oxygen evolution reaction (OER), urea oxidation reaction (UOR), glycerol oxidation reaction (GOR), hydroxymethylfurfural oxidation reaction (HMFOR), and ammonia oxidation reaction (AOR). By summarizing recent research findings, this review aims to provide a systematical summary of how surface dynamics can be harnessed to improve the design of Ni-based catalysts for a variety of electrooxidation applications, paving the way for advancements in energy conversion and storage technologies.
  • 加载中
    1. [1]

      E. Fabbri, M. Nachtegaal, T. Binninger, et al. Nat. Mater. 16 (2017) 925–931.  doi: 10.1038/nmat4938

    2. [2]

      D. Streich, C. Erk, A. Guéguen, et al., J. Phys. Chem. C 121 (2017) 13481–13486.  doi: 10.1021/acs.jpcc.7b02303

    3. [3]

      F. Wang, C. Kuang, Z. Zheng, et al., Chin. Chem. Lett. 36 (2025) 109989.

    4. [4]

      S. Banerjee, A. Kakekhani, R.B. Wexler, A.M. Rappe, ACS. Catal. 13 (2023) 4611–4621.  doi: 10.1021/acscatal.2c06427

    5. [5]

      X. Yang, X. Sun, J. Qi, et al., J. Colloid Interface Sci. 677 (2025) 406–416.

    6. [6]

      X. Ma, D.J. Zheng, S. Hou, et al., ACS. Catal. 13 (2023) 7587–7596.  doi: 10.1021/acscatal.3c00625

    7. [7]

      J. Chen, K. Wang, Z. Liu, et al., Chem. Eng. J. 489 (2024) 151234.

    8. [8]

      E.J. Popczun, J.R. McKone, C.G. Read, et al., J. Am. Chem. Soc. 135 (2013) 9267–9270.  doi: 10.1021/ja403440e

    9. [9]

      X. Ma, L. Schröck, G. Gao, et al., ACS. Catal. 14 (2024) 15916–15926.  doi: 10.1021/acscatal.4c03618

    10. [10]

      X. Wang, X. Liu, J. Fang, et al., Nat. Commun. 15 (2024) 1137.

    11. [11]

      S.C. Karthikeyan, S. Ramakrishnan, S. Prabhakaran, et al., Small. 20 (2024) 2402241.

    12. [12]

      J.A. Bau, H. Haspel, S. Ould-Chikh, et al., J. Mater. Chem. A 7 (2019) 15031–15035.  doi: 10.1039/c9ta04494a

    13. [13]

      H. Xu, K. Wang, L. Jin, et al., J. Colloid Interface Sci. 650 (2023) 1500–1508.

    14. [14]

      J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Nano-Micro Lett. 15 (2023) 30.

    15. [15]

      Z. Chen, R. Zheng, H. Zou, et al., Chem. Eng. J. 465 (2023) 142684.

    16. [16]

      M. Hao, J. Chen, Z. Liu, et al., Chem. Commun. 59 (2023) 13147–13150.  doi: 10.1039/d3cc04684b

    17. [17]

      Y. Ren, R. Chang, X. Hu, et al., Chin. Chem. Lett. 34 (2023) 108634.

    18. [18]

      M. Guo, P. Li, A. Wang, et al., Chem. Commun. 59 (2023) 5098–5101.  doi: 10.1039/d3cc00282a

    19. [19]

      X. Ding, M. Li, J. Jin, et al., Chin. Chem. Lett. 33 (2022) 2687–2691.

    20. [20]

      M. Hao, J. Chen, J. Chen, et al., J. Colloid Interface Sci. 642 (2023) 41–52.

    21. [21]

      W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Acc. Chem. Res. 53 (2020) 1111–1123.  doi: 10.1021/acs.accounts.0c00127

    22. [22]

      L. Kang, J. Li, Y. Wang, et al., J. Colloid Interface Sci. 630 (2023) 257–265.

    23. [23]

      Z. Xu, Z. Wang, L. Yang, et al., Appl. Suf. Sci. 698 (2025) 163090.

    24. [24]

      J. Li, M. Guo, X. Yang, J. Wang, et al., Prog. Nat. Sci. 32 (2022) 705–714.

    25. [25]

      W. Sun, Y. Wang, S. Liu, et al., Chem. Commun. 58 (2022) 11981–11984.  doi: 10.1039/d2cc04646f

    26. [26]

      J. Xie, C. Dong, J. Li, et al., Chem. Commun. 58 (2022) 6360–6363.  doi: 10.1039/d2cc01480g

    27. [27]

      F. Yang, X. Bao, P. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 14179–14183.  doi: 10.1002/anie.201908194

    28. [28]

      X. Liao, Z. Huang, W. Zhang, et al., J. Colloid Interface Sci. 674 (2024) 1048–1057.

    29. [29]

      W. Sun, J. Li, W. Gao, et al., Chem. Commun. 58 (2022) 2430–2442.  doi: 10.1039/d1cc06290e

    30. [30]

      H. Wei, J. Si, L. Zeng, et al., Chin. Chem. Lett. 34 (2023) 107144.

    31. [31]

      S. Cao, J. Qi, F. Lei, et al., Chem. Eng. J. 413 (2021) 127540.

    32. [32]

      X. Yang, L. Kang, Z. Wei, et al., Chem. Eng. J. 422 (2021) 130139.

    33. [33]

      X. Liu, K. Ni, B. Wen, et al., ACS. Energy Lett. 4 (2019) 2585–2592.  doi: 10.1021/acsenergylett.9b01922

    34. [34]

      J. Xie, X. Yang, Y. Wang, et al., Chem. Commun. 57 (2021) 11517–11520.  doi: 10.1039/d1cc05423f

    35. [35]

      J. Xie, J. Xin, R. Wang, et al., Nano Energy 53 (2018) 74–82.

    36. [36]

      J. Xie, X. Zhang, H. Zhang, et al., Adv. Mater. 29 (2017) 1604765.

    37. [37]

      A.T. Sivagurunathan, T. Kavinkumar, D.H. Kim, J. Mater. Chem. A 12 (2024) 32117–32131.  doi: 10.1039/d4ta05392c

    38. [38]

      N.C.S. Selvam, L. Du, B.Y. Xia, et al., Adv. Funct. Mater. 31 (2020) 2008190.

    39. [39]

      W.M. Dose, W. Li, I. Temprano, et al., ACS. Energy Lett. 7 (2022) 3524–3530.  doi: 10.1021/acsenergylett.2c01722

    40. [40]

      S. Hernández-Salvador, I. Márquez, S. Gutiérrez-Tarriño, et al., Electrochim. Acta 525 (2025) 146158.

    41. [41]

      S. Samira, J. Hong, J.C.A. Camayang, et al., JACS. Au 1 (2021) 2224–2241.  doi: 10.1021/jacsau.1c00359

    42. [42]

      Q. Zhou, J. Wang, G. Jin, H. Liu, C. Wang, J. Mater. Chem. A 12 (2024) 12475–12486.  doi: 10.1039/d4ta01543f

    43. [43]

      G.M. Tomboc, S. Venkateshalu, Q.T. Ngo, et al., Chem. Eng. J. 454 (2023) 140254.

    44. [44]

      Q. Xu, H. Jiang, X. Duan, et al., Nano Lett. 21 (2020) 492–499.

    45. [45]

      Y.J. Wu, J. Yang, T.X. Tu, et al., Angew. Chem. Int. Ed. 60 (2021) 26829–26836.  doi: 10.1002/anie.202112447

    46. [46]

      J. Zhao, J. Lian, Z. Zhao, X. Wang, J. Zhang, Nanomicro Lett. 15 (2022) 19.

    47. [47]

      H. Sun, C.W. Tung, Y. Qiu, et al., J. Am. Chem. Soc. 144 (2021) 1174–1186.  doi: 10.1109/icip42928.2021.9506288

    48. [48]

      Q. Mao, K. Deng, H. Yu, et al., Adv. Funct. Mater. 32 (2022) 2201081.

    49. [49]

      Y. Li, Y. Wu, M. Yuan, et al., Appl. Catal. B: Environ. 318 (2022) 121825.

    50. [50]

      Y. Ge, Z. Huang, C. Ling, et al., J. Am. Chem. Soc. 142 (2020) 18971–18980.  doi: 10.1021/jacs.0c09461

    51. [51]

      S. Lu, J. Liang, H. Long, et al., Acc. Chem. Res. 53 (2020) 2106–2118.  doi: 10.1021/acs.accounts.0c00487

    52. [52]

      Y. Feng, Z. Zhao, F. Li, et al., Nano Lett. 21 (2021) 5075–5082.  doi: 10.1021/acs.nanolett.1c00902

    53. [53]

      S. Fu, Y. Ma, X. Yang, et al., Appl. Catal. B: Environ. 333 (2023) 122813.

    54. [54]

      X. Wang, X. Wang, L. Zhao, et al., Inorg. Chem. Front. 9 (2022) 179–185.

    55. [55]

      S. Xu, Q. Huang, J. Xue, et al., Inorg. Chem. 61 (2022) 8909–8919.  doi: 10.1021/acs.inorgchem.2c01035

    56. [56]

      X. Li, K. Zheng, J. Zhang, G. Li, C. Xu, ACS. Omega 7 (2022) 12430–12441.  doi: 10.1021/acsomega.2c01423

    57. [57]

      C. Ni, K. Wang, L. Jin, et al., Chem. Commun. 61 (2025) 658–668.  doi: 10.1039/d4cc04740k

    58. [58]

      L. Zhao, Y. Xiong, X. Wang, et al., Small. 18 (2022) 2106939.

    59. [59]

      B. Wu, S. Gong, Y. Lin, et al., Adv. Mater. 34 (2022) 2108619.

    60. [60]

      L. Zhang, J. Wang, K. Jiang, et al., Angew. Chem. Int. Ed. 61 (2022) e202214794.

    61. [61]

      T.X. Nguyen, Y.H. Su, C.C. Lin, J.M. Ting, Adv. Funct. Mater. 31 (2021) 2106229.

    62. [62]

      D. Yang, Z. Su, Y. Chen, et al., Chem. Eng. J. 430 (2022) 133046.

    63. [63]

      L. Sun, Z. Zhou, Y. Xie, et al., Adv. Funct. Mater. 33 (2023) 2301884.

    64. [64]

      X. Ren, C. Wei, Y. Sun, et al., Adv. Mater. 32 (2020) 2001292.

    65. [65]

      X. Li, C. Wang, S. Zheng, et al., J. Colloid Interface Sci. 624 (2022) 443–449.

    66. [66]

      Y. Huang, Y. Wang, C. Tang, et al., Adv. Mater. 31 (2019) e1803800.

    67. [67]

      M. Guo, S. Song, S. Zhang, et al., ACS Sustain. Chem. Eng. 8 (2020) 7436–7444.  doi: 10.1021/acssuschemeng.0c01467

    68. [68]

      X. Zheng, G. Jia, G. Fan, et al., Small. 16 (2020) 2003630.

    69. [69]

      J. Wang, L. Liu, C. Chen, et al., J. Mater. Chem. A 8 (2020) 4464–4472.

    70. [70]

      Z. Wu, Y. Zhao, W. Jin, et al., Adv. Funct. Mater. 31 (2020) 2009070.

    71. [71]

      X. Guo, Z. Liu, F. Liu, et al., Catal. Sci. Technol. 10 (2020) 1056–1065.  doi: 10.1039/c9cy02189b

    72. [72]

      Z. Shao, H. Meng, J. Sun, et al., ACS Appl. Mater. Interfaces 12 (2020) 51846–51853.  doi: 10.1021/acsami.0c15870

    73. [73]

      S. Huang, Z. Jin, P. Ning, et al., Chem. Eng. J. 420 (2021) 127630.

    74. [74]

      T. Chen, B. Li, K. Song, et al., J. Mater. Chem. A 10 (2022) 22750–22759.  doi: 10.1039/d2ta04879e

    75. [75]

      R. Jiang, J. Zhang, J. Gao, et al., Small. 20 (2024) 2401384.

    76. [76]

      H. Chu, R. Li, P. Feng, et al., ACS. Catal. (2024) 1553–1566.  doi: 10.1021/acscatal.3c05314

    77. [77]

      G.M. Tomboc, S. Venkateshalu, Q.T. Ngo, et al., Chem. Eng. J. 454 (2023) 140254.

    78. [78]

      Q. He, Y. Wan, H. Jiang, et al., ACS. Energy Lett. 3 (2018) 1373–1380.  doi: 10.1021/acsenergylett.8b00515

    79. [79]

      Y. Zhou, W. Zhang, J. Hu, et al., ACS Sustain. Chem. Eng. 9 (2021) 7390–7399.  doi: 10.1021/acssuschemeng.1c02256

    80. [80]

      L. Sun, X. Pan, Y.N. Xie, et al., Angew. Chem. Int. Ed. 63 (2024) e202402176.

    81. [81]

      Y. Wang, Y. Zhu, S. Zhao, et al., Matter. 3 (2020) 2124–2137.

    82. [82]

      J. Zhang, J. Li, C. Zhong, et al., Nano Lett. 21 (2021) 8166–8174.  doi: 10.1021/acs.nanolett.1c02623

    83. [83]

      X. Wang, W. Zhou, S. Zhai, et al., Angew. Chem. 136 (2024) e202400323.

    84. [84]

      Y. Wang, Y. Wang, J. Bai, et al., J. Alloy. Compd. 893 (2022) 132164.

    85. [85]

      Y. Ma, M.X. Li, R.N. Luan, et al., Int. J. Hydrogen Energy 47 (2022) 33352–33360.

    86. [86]

      Y. Fang, Y. Fang, R. Zong, et al., J. Mater. Chem. A 10 (2022) 1369–1379.  doi: 10.1039/d1ta08531j

    87. [87]

      Q. Liao, T. You, X. Liu, et al., J. Mater. Chem. A 12 (2024) 9830–9840.  doi: 10.1039/d4ta00277f

    88. [88]

      C. Luan, D. Escalera-López, U. Hagemann, et al., ACS. Catal. 14 (2024) 12704–12716.  doi: 10.1021/acscatal.4c02792

    89. [89]

      S. Seenivasan, J. Seo, Chem. Eng. J. 454 (2023) 140558.

    90. [90]

      D. Kim, S. Park, J. Choi, Y. Piao, L.Y.S. Lee, Small. 20 (2023) e2304822.

    91. [91]

      Q. Su, Q. Liu, P. Wang, et al., Chem. Eng. J. 483 (2024) 149383.

    92. [92]

      Q. Xu, M. Chu, M. Liu, et al., Chem. Eng. J. 411 (2021) 128488.

    93. [93]

      Y. Zhou, Y. Li, L. Zhang, et al., Chem. Eng. J. 394 (2020) 124977.

    94. [94]

      B. Kirubasankar, Y.S. Won, S.H. Choi, et al., Chem. Commun. 59 (2023) 9247–9250.  doi: 10.1039/d3cc01510f

    95. [95]

      Y. Sun, J. Wu, Z. Zhang, et al., Energy Environ. Sci. 15 (2022) 633–644.  doi: 10.1039/d1ee02985a

    96. [96]

      L.Y. Zhang, Y. Ouyang, S. Wang, et al., Small. 15 (2019) e1904245.

    97. [97]

      S. Fan, J. Zhang, Q. Wu, et al., J. Phys. Chem. Lett. 11 (2020) 3911–3919.  doi: 10.1021/acs.jpclett.0c00851

    98. [98]

      L.P. Lv, P. Du, P. Liu, X. Li, Y. Wang, A.C.S. Sustain. Chem. Eng. 8 (2020) 8391–8401.  doi: 10.1021/acssuschemeng.0c02572

    99. [99]

      C. Su, L. Zhang, Y. Han, et al., Sens. Actuat. B: Chem. 304 (2020) 127347.

    100. [100]

      G. Zhang, D. Chen, N. Li, et al., Angew. Chem. Int. Ed. 132 (2020) 8332–8338.  doi: 10.1002/ange.202000503

    101. [101]

      C. Wang, L. Qi, Angew. Chem. Int. Ed. 59 (2020) 17219–17224.  doi: 10.1002/anie.202005436

    102. [102]

      Z. Xu, Q. Chen, Q. Chen, et al., J. Mater. Chem. A 10 (2022) 24137–24146.  doi: 10.1039/d2ta05494a

    103. [103]

      Z. Huang, X. Liao, W. Zhang, J. Hu, Q. Gao, ACS. Catal. 12 (2022) 13951–13960.  doi: 10.1021/acscatal.2c03912

    104. [104]

      S. Choi, S.J. Kim, S. Han, et al., ACS. Catal. 14 (2024) 15096–15107.  doi: 10.1021/acscatal.4c03594

    105. [105]

      Y.G. Kim, J.H. Baricuatro, M.P. Soriaga, Electrocatalysis 9 (2018) 526–530.  doi: 10.1007/s12678-018-0469-z

    106. [106]

      Y.H. Wu, M. Janák, P.M. Abdala, et al., J. Am. Chem. Soc. 146 (2024) 11887–11896.  doi: 10.1021/jacs.4c00863

    107. [107]

      L. Trotochaud, S.L. Young, J.K. Ranney, et al., J. Am. Chem. Soc. 136 (2014) 6744–6753.  doi: 10.1021/ja502379c

    108. [108]

      M. Kim, B. Lee, H. Ju, S.W. Lee, J. Kim, Adv. Mater. 31 (2019) 1901977.

    109. [109]

      G. Zhang, J. Zeng, J. Yin, et al., Appl. Catal. B: Environ. 286 (2021) 119902.

    110. [110]

      Y. Li, Y. Wu, H. Hao, et al., Appl. Catal. B: Environ. 305 (2022) 121033.

    111. [111]

      Z. Du, Z. Meng, X. Gong, et al., Angew. Chem. Int. Ed. 63 (2024) e202317022.

    112. [112]

      X. Ji, Y. Zhang, Z. Ma, Y. Qiu, ChemSusChem. 13 (2020) 5004–5014.  doi: 10.1002/cssc.202001185

    113. [113]

      B. Zhu, Z. Liang, R. Zou, Small 16 (2020) 1906133.

    114. [114]

      J. Li, S. Wang, J. Chang, L. Feng, Adv. Powder Mater. 1 (2022) 100030.

    115. [115]

      X. Huang, R. He, S. Wang, Y. Yang, L. Feng, Inorg. Chem. 61 (2022) 18318–18324.  doi: 10.1021/acs.inorgchem.2c03498

    116. [116]

      H. Xu, L. Yang, K. Wang, et al., Inorg. Chem. 62 (2023) 11271–11277.  doi: 10.1021/acs.inorgchem.3c01701

    117. [117]

      Z. Ji, W. Yuan, S. Zhao, et al., Chem. Catal. 3 (2023) 100501.

    118. [118]

      H. Qin, Y. Ye, J. Li, et al., Adv. Funct. Mater. 33 (2022) 2209698.

    119. [119]

      X. Gao, X. Bai, P. Wang, et al., Nat. Commun. 14 (2023) 5842.

    120. [120]

      H. Xu, P. Song, C. Fernandez, et al., ACS Appl. Mater. Interfaces 10 (2018) 12659–12665.  doi: 10.1021/acsami.8b00532

    121. [121]

      W. Chen, S. Luo, M. Sun, et al., Adv. Mater. 34 (2022) e2206276.

    122. [122]

      R.Y. Fan, X.J. Zhai, W.Z. Qiao, et al., Nano-Micro Lett. 15 (2023) 190.

    123. [123]

      Y. Xue, M. Liu, Y. Qin, et al., Chin. Chem. Lett. 33 (2022) 3916–3920.

    124. [124]

      M. Li, H. Wang, Z. Yang, et al., Chin. Chem. Lett. 36 (2025) 110199.

    125. [125]

      S. Wang, Y. Yan, Y. Du, et al., Adv. Funct. Mater. 34 (2024) 2404290.

    126. [126]

      M. Sajid, X. Zhao, D. Liu, Green Chem. 20 (2018) 5427–5453.

    127. [127]

      M. Cai, Y. Zhang, Y. Zhao, et al., J. Mater. Chem. A 8 (2020) 20386–20392.  doi: 10.1039/d0ta07793c

    128. [128]

      Y. Yang, T. Mu, Green Chem. 23 (2021) 4228–4254.

    129. [129]

      S. Li, S. Wang, Y. Wang, et al., Adv. Funct. Mater. 33 (2023) 2214488.

    130. [130]

      C. Liu, X.R. Shi, K. Yue, et al., Adv. Mater. 35 (2023) 2211177.

    131. [131]

      D. Xiao, X. Bao, D. Dai, et al., Adv. Mater. 35 (2023) 2304133.

    132. [132]

      H. Kim, S. Hong, H. Kim, et al., Appl. Mater. Today 29 (2022) 101640.

    133. [133]

      M. Sun, J. Liu, C. Song, et al., ACS Appl. Mater. Interfaces 11 (2019) 23102–23111.  doi: 10.1021/acsami.9b02128

    134. [134]

      D.N. Stephens, R.K. Szilagyi, P.N. Roehling, N. Arulsamy, M.T. Mock, Angew. Chem. 135 (2023) e202213462.

    135. [135]

      J. Hou, Y. Cheng, H. Pan, P. Kang, Inorg. Chem. 62 (2023) 3986–3992.  doi: 10.1021/acs.inorgchem.2c04440

    136. [136]

      S.S. Prabowo Rahardjo, Y.J. Shih, ACS Sustain. Chem. Eng. 10 (2022) 5043–5054.  doi: 10.1021/acssuschemeng.2c00740

    137. [137]

      K. Nagita, Y. Yuhara, K. Fujii, Y. Katayama, M. Nakayama, ACS Appl. Mater. Interfaces 13 (2021) 28098–28107.  doi: 10.1021/acsami.1c04422

    138. [138]

      M.K. Adak, H.K. Basak, S. Kumar, B. Chakraborty, A.C.S. Appl. Nano Mater. 7 (2024) 8329–8340.  doi: 10.1021/acsanm.4c01397

    139. [139]

      H. Zhang, H. Wang, X. Tong, et al., Chem. Eng. J. 452 (2023) 139582.

    140. [140]

      L. Wang, K. Jiang, Z. Wang, et al., Chem. Eng. J. 492 (2024) 152268.

    141. [141]

      F. Meng, C. Dai, Z. Liu, et al., eScience 9 (2022) 87–94.

    142. [142]

      M. Abdullah, A. Hameed, N. Zhang, et al., ACS Appl. Mater. Interface 13 (2021) 30603–30613.  doi: 10.1021/acsami.1c06258

    143. [143]

      G. Fu, X. Kang, Y. Zhang, et al., Nano-Micro Lett. 14 (2024) 200.

    144. [144]

      X. Tan, S. Chen, D. Yan, et al., J. Energy Chem. 98 (2024) 588–614.

    145. [145]

      Y. Zhang, W. Zhu, J. Fang, et al., Nano Res. 15 (2022) 2987–2993.

    146. [146]

      Q. Huang, F. Wang, Z. Sun, et al., Adv. Funct. Mater. 34 (2024) 2407407.

    147. [147]

      J. Huang, Y. Li, Y. Zhang, et al., Angew. Chem. 131 (2019) 17619–17625.  doi: 10.1002/ange.201910716

    148. [148]

      Y. Li, L. Yang, X. Hao, et al., Angew. Chem. Int. Ed. 64 (2025) e202413916.

    149. [149]

      C.X. Zhao, J.N. Liu, C. Wang, et al., Energy Environ. Sci. 15 (2022) 3257–3264.  doi: 10.1039/d2ee01036d

    150. [150]

      R. Chen, Z. Zhang, Z. Wang, et al., ACS. Catal. 12 (2022) 13234–13246.  doi: 10.1021/acscatal.2c03338

    151. [151]

      Q. Su, P. Wang, Q. Liu, et al., Appl. Catal. B: Environ. Energy 351 (2024) 123994.

  • 加载中
    1. [1]

      Zhenhui SongXing WuTianyu GaoFubing YaoXi TangQaisar MahmoodChong-Jian Tang . Performance enhancement strategies for electrooxidation degradation of landfill leachate: A review. Chinese Chemical Letters, 2025, 36(12): 111008-. doi: 10.1016/j.cclet.2025.111008

    2. [2]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    3. [3]

      Xueqi DuGe GaoGuoxiang PanZhong QiuYongqi ZhangShenghui ShenTianqi YangXinqi LiangPing LiuXinhui Xia . Utilizing BBr3 plasma to create high-quality solid electrolyte interphases for enhanced lithium metal anodes. Chinese Chemical Letters, 2025, 36(11): 110753-. doi: 10.1016/j.cclet.2024.110753

    4. [4]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    5. [5]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    6. [6]

      Yunqing ZhuKaiyue WenXuequan WanGaigai DongJunfeng Niu . High efficiency conversion of low concentration nitrate boosted with amorphous Cu0 nanorods prepared via in-situ reconstruction. Chinese Chemical Letters, 2025, 36(6): 110399-. doi: 10.1016/j.cclet.2024.110399

    7. [7]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    8. [8]

      Peng GaoHua QiuHuan ChengZeyu DuXiao ChenXing TanChenxi CaiQihong ZhangTong YangNan LyuQiufen TuXingyi LiLei LuNan Huang . Robust and versatile surface via in situ dynamic reassembly of polydopamine under strong alkaline conditions. Chinese Chemical Letters, 2025, 36(10): 110746-. doi: 10.1016/j.cclet.2024.110746

    9. [9]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    10. [10]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    11. [11]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    12. [12]

      Can WangZhe SunDonghan Ma . Review of imaging buffers used in stochastic optical reconstruction microscopy. Chinese Chemical Letters, 2025, 36(9): 110677-. doi: 10.1016/j.cclet.2024.110677

    13. [13]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    14. [14]

      Hao LiHanzhi LuLinlin HuXueli ZhangHua ShaoFulun LiYanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342

    15. [15]

      Kailu GuoJinzhi JiaHuijiao WangZiyu HaoYinjian ChenKe ShiHaixia WuCailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888

    16. [16]

      Yuanhua XiaoJinhui ShouShiwei ZhangYa ShenJunwei LiuDangcheng SuYang KongXiaodong JiaQingxiang YangShaoming FangXuezhao Wang . Synergistic interlayer confinement and built-in electric field construct reconstruction-inhibited cobalt selenide for robust oxygen evolution at high current density. Chinese Chemical Letters, 2025, 36(11): 111441-. doi: 10.1016/j.cclet.2025.111441

    17. [17]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    18. [18]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    19. [19]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    20. [20]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

Metrics
  • PDF Downloads(0)
  • Abstract views(13)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return