Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction
-
* Corresponding authors.
E-mail addresses: wcheng773831229@163.com (C. Wang), duyk@suda.edu.cn (Y. Du).
Citation:
Cheng Wang, Li Zhou, Zhenghao Fei, Yanqing Wang, Yukou Du. Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction[J]. Chinese Chemical Letters,
;2025, 36(12): 111746.
doi:
10.1016/j.cclet.2025.111746
E. Fabbri, M. Nachtegaal, T. Binninger, et al. Nat. Mater. 16 (2017) 925–931.
doi: 10.1038/nmat4938
D. Streich, C. Erk, A. Guéguen, et al., J. Phys. Chem. C 121 (2017) 13481–13486.
doi: 10.1021/acs.jpcc.7b02303
F. Wang, C. Kuang, Z. Zheng, et al., Chin. Chem. Lett. 36 (2025) 109989.
S. Banerjee, A. Kakekhani, R.B. Wexler, A.M. Rappe, ACS. Catal. 13 (2023) 4611–4621.
doi: 10.1021/acscatal.2c06427
X. Yang, X. Sun, J. Qi, et al., J. Colloid Interface Sci. 677 (2025) 406–416.
X. Ma, D.J. Zheng, S. Hou, et al., ACS. Catal. 13 (2023) 7587–7596.
doi: 10.1021/acscatal.3c00625
J. Chen, K. Wang, Z. Liu, et al., Chem. Eng. J. 489 (2024) 151234.
E.J. Popczun, J.R. McKone, C.G. Read, et al., J. Am. Chem. Soc. 135 (2013) 9267–9270.
doi: 10.1021/ja403440e
X. Ma, L. Schröck, G. Gao, et al., ACS. Catal. 14 (2024) 15916–15926.
doi: 10.1021/acscatal.4c03618
X. Wang, X. Liu, J. Fang, et al., Nat. Commun. 15 (2024) 1137.
S.C. Karthikeyan, S. Ramakrishnan, S. Prabhakaran, et al., Small. 20 (2024) 2402241.
J.A. Bau, H. Haspel, S. Ould-Chikh, et al., J. Mater. Chem. A 7 (2019) 15031–15035.
doi: 10.1039/c9ta04494a
H. Xu, K. Wang, L. Jin, et al., J. Colloid Interface Sci. 650 (2023) 1500–1508.
J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Nano-Micro Lett. 15 (2023) 30.
Z. Chen, R. Zheng, H. Zou, et al., Chem. Eng. J. 465 (2023) 142684.
M. Hao, J. Chen, Z. Liu, et al., Chem. Commun. 59 (2023) 13147–13150.
doi: 10.1039/d3cc04684b
Y. Ren, R. Chang, X. Hu, et al., Chin. Chem. Lett. 34 (2023) 108634.
M. Guo, P. Li, A. Wang, et al., Chem. Commun. 59 (2023) 5098–5101.
doi: 10.1039/d3cc00282a
X. Ding, M. Li, J. Jin, et al., Chin. Chem. Lett. 33 (2022) 2687–2691.
M. Hao, J. Chen, J. Chen, et al., J. Colloid Interface Sci. 642 (2023) 41–52.
W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Acc. Chem. Res. 53 (2020) 1111–1123.
doi: 10.1021/acs.accounts.0c00127
L. Kang, J. Li, Y. Wang, et al., J. Colloid Interface Sci. 630 (2023) 257–265.
Z. Xu, Z. Wang, L. Yang, et al., Appl. Suf. Sci. 698 (2025) 163090.
J. Li, M. Guo, X. Yang, J. Wang, et al., Prog. Nat. Sci. 32 (2022) 705–714.
W. Sun, Y. Wang, S. Liu, et al., Chem. Commun. 58 (2022) 11981–11984.
doi: 10.1039/d2cc04646f
J. Xie, C. Dong, J. Li, et al., Chem. Commun. 58 (2022) 6360–6363.
doi: 10.1039/d2cc01480g
F. Yang, X. Bao, P. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 14179–14183.
doi: 10.1002/anie.201908194
X. Liao, Z. Huang, W. Zhang, et al., J. Colloid Interface Sci. 674 (2024) 1048–1057.
W. Sun, J. Li, W. Gao, et al., Chem. Commun. 58 (2022) 2430–2442.
doi: 10.1039/d1cc06290e
H. Wei, J. Si, L. Zeng, et al., Chin. Chem. Lett. 34 (2023) 107144.
S. Cao, J. Qi, F. Lei, et al., Chem. Eng. J. 413 (2021) 127540.
X. Yang, L. Kang, Z. Wei, et al., Chem. Eng. J. 422 (2021) 130139.
X. Liu, K. Ni, B. Wen, et al., ACS. Energy Lett. 4 (2019) 2585–2592.
doi: 10.1021/acsenergylett.9b01922
J. Xie, X. Yang, Y. Wang, et al., Chem. Commun. 57 (2021) 11517–11520.
doi: 10.1039/d1cc05423f
J. Xie, J. Xin, R. Wang, et al., Nano Energy 53 (2018) 74–82.
J. Xie, X. Zhang, H. Zhang, et al., Adv. Mater. 29 (2017) 1604765.
A.T. Sivagurunathan, T. Kavinkumar, D.H. Kim, J. Mater. Chem. A 12 (2024) 32117–32131.
doi: 10.1039/d4ta05392c
N.C.S. Selvam, L. Du, B.Y. Xia, et al., Adv. Funct. Mater. 31 (2020) 2008190.
W.M. Dose, W. Li, I. Temprano, et al., ACS. Energy Lett. 7 (2022) 3524–3530.
doi: 10.1021/acsenergylett.2c01722
S. Hernández-Salvador, I. Márquez, S. Gutiérrez-Tarriño, et al., Electrochim. Acta 525 (2025) 146158.
S. Samira, J. Hong, J.C.A. Camayang, et al., JACS. Au 1 (2021) 2224–2241.
doi: 10.1021/jacsau.1c00359
Q. Zhou, J. Wang, G. Jin, H. Liu, C. Wang, J. Mater. Chem. A 12 (2024) 12475–12486.
doi: 10.1039/d4ta01543f
G.M. Tomboc, S. Venkateshalu, Q.T. Ngo, et al., Chem. Eng. J. 454 (2023) 140254.
Q. Xu, H. Jiang, X. Duan, et al., Nano Lett. 21 (2020) 492–499.
Y.J. Wu, J. Yang, T.X. Tu, et al., Angew. Chem. Int. Ed. 60 (2021) 26829–26836.
doi: 10.1002/anie.202112447
J. Zhao, J. Lian, Z. Zhao, X. Wang, J. Zhang, Nanomicro Lett. 15 (2022) 19.
H. Sun, C.W. Tung, Y. Qiu, et al., J. Am. Chem. Soc. 144 (2021) 1174–1186.
doi: 10.1109/icip42928.2021.9506288
Q. Mao, K. Deng, H. Yu, et al., Adv. Funct. Mater. 32 (2022) 2201081.
Y. Li, Y. Wu, M. Yuan, et al., Appl. Catal. B: Environ. 318 (2022) 121825.
Y. Ge, Z. Huang, C. Ling, et al., J. Am. Chem. Soc. 142 (2020) 18971–18980.
doi: 10.1021/jacs.0c09461
S. Lu, J. Liang, H. Long, et al., Acc. Chem. Res. 53 (2020) 2106–2118.
doi: 10.1021/acs.accounts.0c00487
Y. Feng, Z. Zhao, F. Li, et al., Nano Lett. 21 (2021) 5075–5082.
doi: 10.1021/acs.nanolett.1c00902
S. Fu, Y. Ma, X. Yang, et al., Appl. Catal. B: Environ. 333 (2023) 122813.
X. Wang, X. Wang, L. Zhao, et al., Inorg. Chem. Front. 9 (2022) 179–185.
S. Xu, Q. Huang, J. Xue, et al., Inorg. Chem. 61 (2022) 8909–8919.
doi: 10.1021/acs.inorgchem.2c01035
X. Li, K. Zheng, J. Zhang, G. Li, C. Xu, ACS. Omega 7 (2022) 12430–12441.
doi: 10.1021/acsomega.2c01423
C. Ni, K. Wang, L. Jin, et al., Chem. Commun. 61 (2025) 658–668.
doi: 10.1039/d4cc04740k
L. Zhao, Y. Xiong, X. Wang, et al., Small. 18 (2022) 2106939.
B. Wu, S. Gong, Y. Lin, et al., Adv. Mater. 34 (2022) 2108619.
L. Zhang, J. Wang, K. Jiang, et al., Angew. Chem. Int. Ed. 61 (2022) e202214794.
T.X. Nguyen, Y.H. Su, C.C. Lin, J.M. Ting, Adv. Funct. Mater. 31 (2021) 2106229.
D. Yang, Z. Su, Y. Chen, et al., Chem. Eng. J. 430 (2022) 133046.
L. Sun, Z. Zhou, Y. Xie, et al., Adv. Funct. Mater. 33 (2023) 2301884.
X. Ren, C. Wei, Y. Sun, et al., Adv. Mater. 32 (2020) 2001292.
X. Li, C. Wang, S. Zheng, et al., J. Colloid Interface Sci. 624 (2022) 443–449.
Y. Huang, Y. Wang, C. Tang, et al., Adv. Mater. 31 (2019) e1803800.
M. Guo, S. Song, S. Zhang, et al., ACS Sustain. Chem. Eng. 8 (2020) 7436–7444.
doi: 10.1021/acssuschemeng.0c01467
X. Zheng, G. Jia, G. Fan, et al., Small. 16 (2020) 2003630.
J. Wang, L. Liu, C. Chen, et al., J. Mater. Chem. A 8 (2020) 4464–4472.
Z. Wu, Y. Zhao, W. Jin, et al., Adv. Funct. Mater. 31 (2020) 2009070.
X. Guo, Z. Liu, F. Liu, et al., Catal. Sci. Technol. 10 (2020) 1056–1065.
doi: 10.1039/c9cy02189b
Z. Shao, H. Meng, J. Sun, et al., ACS Appl. Mater. Interfaces 12 (2020) 51846–51853.
doi: 10.1021/acsami.0c15870
S. Huang, Z. Jin, P. Ning, et al., Chem. Eng. J. 420 (2021) 127630.
T. Chen, B. Li, K. Song, et al., J. Mater. Chem. A 10 (2022) 22750–22759.
doi: 10.1039/d2ta04879e
R. Jiang, J. Zhang, J. Gao, et al., Small. 20 (2024) 2401384.
H. Chu, R. Li, P. Feng, et al., ACS. Catal. (2024) 1553–1566.
doi: 10.1021/acscatal.3c05314
G.M. Tomboc, S. Venkateshalu, Q.T. Ngo, et al., Chem. Eng. J. 454 (2023) 140254.
Q. He, Y. Wan, H. Jiang, et al., ACS. Energy Lett. 3 (2018) 1373–1380.
doi: 10.1021/acsenergylett.8b00515
Y. Zhou, W. Zhang, J. Hu, et al., ACS Sustain. Chem. Eng. 9 (2021) 7390–7399.
doi: 10.1021/acssuschemeng.1c02256
L. Sun, X. Pan, Y.N. Xie, et al., Angew. Chem. Int. Ed. 63 (2024) e202402176.
Y. Wang, Y. Zhu, S. Zhao, et al., Matter. 3 (2020) 2124–2137.
J. Zhang, J. Li, C. Zhong, et al., Nano Lett. 21 (2021) 8166–8174.
doi: 10.1021/acs.nanolett.1c02623
X. Wang, W. Zhou, S. Zhai, et al., Angew. Chem. 136 (2024) e202400323.
Y. Wang, Y. Wang, J. Bai, et al., J. Alloy. Compd. 893 (2022) 132164.
Y. Ma, M.X. Li, R.N. Luan, et al., Int. J. Hydrogen Energy 47 (2022) 33352–33360.
Y. Fang, Y. Fang, R. Zong, et al., J. Mater. Chem. A 10 (2022) 1369–1379.
doi: 10.1039/d1ta08531j
Q. Liao, T. You, X. Liu, et al., J. Mater. Chem. A 12 (2024) 9830–9840.
doi: 10.1039/d4ta00277f
C. Luan, D. Escalera-López, U. Hagemann, et al., ACS. Catal. 14 (2024) 12704–12716.
doi: 10.1021/acscatal.4c02792
S. Seenivasan, J. Seo, Chem. Eng. J. 454 (2023) 140558.
D. Kim, S. Park, J. Choi, Y. Piao, L.Y.S. Lee, Small. 20 (2023) e2304822.
Q. Su, Q. Liu, P. Wang, et al., Chem. Eng. J. 483 (2024) 149383.
Q. Xu, M. Chu, M. Liu, et al., Chem. Eng. J. 411 (2021) 128488.
Y. Zhou, Y. Li, L. Zhang, et al., Chem. Eng. J. 394 (2020) 124977.
B. Kirubasankar, Y.S. Won, S.H. Choi, et al., Chem. Commun. 59 (2023) 9247–9250.
doi: 10.1039/d3cc01510f
Y. Sun, J. Wu, Z. Zhang, et al., Energy Environ. Sci. 15 (2022) 633–644.
doi: 10.1039/d1ee02985a
L.Y. Zhang, Y. Ouyang, S. Wang, et al., Small. 15 (2019) e1904245.
S. Fan, J. Zhang, Q. Wu, et al., J. Phys. Chem. Lett. 11 (2020) 3911–3919.
doi: 10.1021/acs.jpclett.0c00851
L.P. Lv, P. Du, P. Liu, X. Li, Y. Wang, A.C.S. Sustain. Chem. Eng. 8 (2020) 8391–8401.
doi: 10.1021/acssuschemeng.0c02572
C. Su, L. Zhang, Y. Han, et al., Sens. Actuat. B: Chem. 304 (2020) 127347.
G. Zhang, D. Chen, N. Li, et al., Angew. Chem. Int. Ed. 132 (2020) 8332–8338.
doi: 10.1002/ange.202000503
C. Wang, L. Qi, Angew. Chem. Int. Ed. 59 (2020) 17219–17224.
doi: 10.1002/anie.202005436
Z. Xu, Q. Chen, Q. Chen, et al., J. Mater. Chem. A 10 (2022) 24137–24146.
doi: 10.1039/d2ta05494a
Z. Huang, X. Liao, W. Zhang, J. Hu, Q. Gao, ACS. Catal. 12 (2022) 13951–13960.
doi: 10.1021/acscatal.2c03912
S. Choi, S.J. Kim, S. Han, et al., ACS. Catal. 14 (2024) 15096–15107.
doi: 10.1021/acscatal.4c03594
Y.G. Kim, J.H. Baricuatro, M.P. Soriaga, Electrocatalysis 9 (2018) 526–530.
doi: 10.1007/s12678-018-0469-z
Y.H. Wu, M. Janák, P.M. Abdala, et al., J. Am. Chem. Soc. 146 (2024) 11887–11896.
doi: 10.1021/jacs.4c00863
L. Trotochaud, S.L. Young, J.K. Ranney, et al., J. Am. Chem. Soc. 136 (2014) 6744–6753.
doi: 10.1021/ja502379c
M. Kim, B. Lee, H. Ju, S.W. Lee, J. Kim, Adv. Mater. 31 (2019) 1901977.
G. Zhang, J. Zeng, J. Yin, et al., Appl. Catal. B: Environ. 286 (2021) 119902.
Y. Li, Y. Wu, H. Hao, et al., Appl. Catal. B: Environ. 305 (2022) 121033.
Z. Du, Z. Meng, X. Gong, et al., Angew. Chem. Int. Ed. 63 (2024) e202317022.
X. Ji, Y. Zhang, Z. Ma, Y. Qiu, ChemSusChem. 13 (2020) 5004–5014.
doi: 10.1002/cssc.202001185
B. Zhu, Z. Liang, R. Zou, Small 16 (2020) 1906133.
J. Li, S. Wang, J. Chang, L. Feng, Adv. Powder Mater. 1 (2022) 100030.
X. Huang, R. He, S. Wang, Y. Yang, L. Feng, Inorg. Chem. 61 (2022) 18318–18324.
doi: 10.1021/acs.inorgchem.2c03498
H. Xu, L. Yang, K. Wang, et al., Inorg. Chem. 62 (2023) 11271–11277.
doi: 10.1021/acs.inorgchem.3c01701
Z. Ji, W. Yuan, S. Zhao, et al., Chem. Catal. 3 (2023) 100501.
H. Qin, Y. Ye, J. Li, et al., Adv. Funct. Mater. 33 (2022) 2209698.
X. Gao, X. Bai, P. Wang, et al., Nat. Commun. 14 (2023) 5842.
H. Xu, P. Song, C. Fernandez, et al., ACS Appl. Mater. Interfaces 10 (2018) 12659–12665.
doi: 10.1021/acsami.8b00532
W. Chen, S. Luo, M. Sun, et al., Adv. Mater. 34 (2022) e2206276.
R.Y. Fan, X.J. Zhai, W.Z. Qiao, et al., Nano-Micro Lett. 15 (2023) 190.
Y. Xue, M. Liu, Y. Qin, et al., Chin. Chem. Lett. 33 (2022) 3916–3920.
M. Li, H. Wang, Z. Yang, et al., Chin. Chem. Lett. 36 (2025) 110199.
S. Wang, Y. Yan, Y. Du, et al., Adv. Funct. Mater. 34 (2024) 2404290.
M. Sajid, X. Zhao, D. Liu, Green Chem. 20 (2018) 5427–5453.
M. Cai, Y. Zhang, Y. Zhao, et al., J. Mater. Chem. A 8 (2020) 20386–20392.
doi: 10.1039/d0ta07793c
Y. Yang, T. Mu, Green Chem. 23 (2021) 4228–4254.
S. Li, S. Wang, Y. Wang, et al., Adv. Funct. Mater. 33 (2023) 2214488.
C. Liu, X.R. Shi, K. Yue, et al., Adv. Mater. 35 (2023) 2211177.
D. Xiao, X. Bao, D. Dai, et al., Adv. Mater. 35 (2023) 2304133.
H. Kim, S. Hong, H. Kim, et al., Appl. Mater. Today 29 (2022) 101640.
M. Sun, J. Liu, C. Song, et al., ACS Appl. Mater. Interfaces 11 (2019) 23102–23111.
doi: 10.1021/acsami.9b02128
D.N. Stephens, R.K. Szilagyi, P.N. Roehling, N. Arulsamy, M.T. Mock, Angew. Chem. 135 (2023) e202213462.
J. Hou, Y. Cheng, H. Pan, P. Kang, Inorg. Chem. 62 (2023) 3986–3992.
doi: 10.1021/acs.inorgchem.2c04440
S.S. Prabowo Rahardjo, Y.J. Shih, ACS Sustain. Chem. Eng. 10 (2022) 5043–5054.
doi: 10.1021/acssuschemeng.2c00740
K. Nagita, Y. Yuhara, K. Fujii, Y. Katayama, M. Nakayama, ACS Appl. Mater. Interfaces 13 (2021) 28098–28107.
doi: 10.1021/acsami.1c04422
M.K. Adak, H.K. Basak, S. Kumar, B. Chakraborty, A.C.S. Appl. Nano Mater. 7 (2024) 8329–8340.
doi: 10.1021/acsanm.4c01397
H. Zhang, H. Wang, X. Tong, et al., Chem. Eng. J. 452 (2023) 139582.
L. Wang, K. Jiang, Z. Wang, et al., Chem. Eng. J. 492 (2024) 152268.
F. Meng, C. Dai, Z. Liu, et al., eScience 9 (2022) 87–94.
M. Abdullah, A. Hameed, N. Zhang, et al., ACS Appl. Mater. Interface 13 (2021) 30603–30613.
doi: 10.1021/acsami.1c06258
G. Fu, X. Kang, Y. Zhang, et al., Nano-Micro Lett. 14 (2024) 200.
X. Tan, S. Chen, D. Yan, et al., J. Energy Chem. 98 (2024) 588–614.
Y. Zhang, W. Zhu, J. Fang, et al., Nano Res. 15 (2022) 2987–2993.
Q. Huang, F. Wang, Z. Sun, et al., Adv. Funct. Mater. 34 (2024) 2407407.
J. Huang, Y. Li, Y. Zhang, et al., Angew. Chem. 131 (2019) 17619–17625.
doi: 10.1002/ange.201910716
Y. Li, L. Yang, X. Hao, et al., Angew. Chem. Int. Ed. 64 (2025) e202413916.
C.X. Zhao, J.N. Liu, C. Wang, et al., Energy Environ. Sci. 15 (2022) 3257–3264.
doi: 10.1039/d2ee01036d
R. Chen, Z. Zhang, Z. Wang, et al., ACS. Catal. 12 (2022) 13234–13246.
doi: 10.1021/acscatal.2c03338
Q. Su, P. Wang, Q. Liu, et al., Appl. Catal. B: Environ. Energy 351 (2024) 123994.
Zhenhui Song , Xing Wu , Tianyu Gao , Fubing Yao , Xi Tang , Qaisar Mahmood , Chong-Jian Tang . Performance enhancement strategies for electrooxidation degradation of landfill leachate: A review. Chinese Chemical Letters, 2025, 36(12): 111008-. doi: 10.1016/j.cclet.2025.111008
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Xueqi Du , Ge Gao , Guoxiang Pan , Zhong Qiu , Yongqi Zhang , Shenghui Shen , Tianqi Yang , Xinqi Liang , Ping Liu , Xinhui Xia . Utilizing BBr3 plasma to create high-quality solid electrolyte interphases for enhanced lithium metal anodes. Chinese Chemical Letters, 2025, 36(11): 110753-. doi: 10.1016/j.cclet.2024.110753
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Yunqing Zhu , Kaiyue Wen , Xuequan Wan , Gaigai Dong , Junfeng Niu . High efficiency conversion of low concentration nitrate boosted with amorphous Cu0 nanorods prepared via in-situ reconstruction. Chinese Chemical Letters, 2025, 36(6): 110399-. doi: 10.1016/j.cclet.2024.110399
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Peng Gao , Hua Qiu , Huan Cheng , Zeyu Du , Xiao Chen , Xing Tan , Chenxi Cai , Qihong Zhang , Tong Yang , Nan Lyu , Qiufen Tu , Xingyi Li , Lei Lu , Nan Huang . Robust and versatile surface via in situ dynamic reassembly of polydopamine under strong alkaline conditions. Chinese Chemical Letters, 2025, 36(10): 110746-. doi: 10.1016/j.cclet.2024.110746
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Can Wang , Zhe Sun , Donghan Ma . Review of imaging buffers used in stochastic optical reconstruction microscopy. Chinese Chemical Letters, 2025, 36(9): 110677-. doi: 10.1016/j.cclet.2024.110677
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Hao Li , Hanzhi Lu , Linlin Hu , Xueli Zhang , Hua Shao , Fulun Li , Yanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342
Kailu Guo , Jinzhi Jia , Huijiao Wang , Ziyu Hao , Yinjian Chen , Ke Shi , Haixia Wu , Cailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888
Yuanhua Xiao , Jinhui Shou , Shiwei Zhang , Ya Shen , Junwei Liu , Dangcheng Su , Yang Kong , Xiaodong Jia , Qingxiang Yang , Shaoming Fang , Xuezhao Wang . Synergistic interlayer confinement and built-in electric field construct reconstruction-inhibited cobalt selenide for robust oxygen evolution at high current density. Chinese Chemical Letters, 2025, 36(11): 111441-. doi: 10.1016/j.cclet.2025.111441
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
Xiaoru LIU , Jinlian SHI , Yajia ZHENG , Shuangcun MO , Zhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101