Deprotonation effect doubles active site density in Fe-N4-C catalyst for oxygen reduction electrocatalysis
- 
	                	
	                	* Corresponding author.
 
E-mail address: smzhang@shu.edu.cn (S. Zhang)
	            Citation:
	            
		            Zhili Yang, Liqun Liu, Xuebi Rao, Zeyu Jin, Jialin Sun, Yongkang Zhu, Shiming Zhang. Deprotonation effect doubles active site density in Fe-N4-C catalyst for oxygen reduction electrocatalysis[J]. Chinese Chemical Letters,
							;2025, 36(11): 111440.
						
							doi:
								10.1016/j.cclet.2025.111440
						
					
				
					
				
	        
	                
				Z.P. Cano, D. Banham, S. Ye, et al., Nat. Energy 3 (2018) 279–289.
												 doi: 10.1038/s41560-018-0108-1
											
										
				S. Zhang, M. Chen, X. Zhao, et al., Electrochem. Energy Rev. 4 (2021) 336–381.
												 doi: 10.1007/s41918-020-00085-0
											
										
				M. Li, X. Bi, R. Wang, et al., Matter 2 (2020) 32–49.
												 doi: 10.1016/j.matt.2019.10.007
											
										
				C. Yuan, S. Zhang, J. Zhang, Front. Energy 18 (2024) 206–222.
												 doi: 10.1007/s11708-023-0907-3
											
										
				Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 44 (2015) 2168–2201.
												 doi: 10.1039/C4CS00484A
											
										
				Y. Chen, S. Zhang, J.C.Y. Jung, J. Zhang, Energy Combust. Sci. 98 (2023) 101101.
												 doi: 10.1016/j.pecs.2023.101101
											
										
				A. Sarapuu, J. Lilloja, S. Akula, et al., ChemCatChem 15 (2023) e202300849.
												 doi: 10.1002/cctc.202300849
											
										
				X. Lu, P. Yang, Y. Wan, et al., Coord. Chem. Rev. 495 (2023) 215400.
												 doi: 10.1016/j.ccr.2023.215400
											
										
				Z. Yang, Y. Chen, S. Zhang, J. Zhang, Adv. Funct. Mater. 33 (2023) 2215185.
												 doi: 10.1002/adfm.202215185
											
										
				X. Rao, S. Zhang, J. Zhang, Curr. Opin. Electrochem. 42 (2023) 101416.
												 doi: 10.1016/j.coelec.2023.101416
											
										
				K. Liu, J. Fu, Y. Lin, et al., Nat. Commun. 13 (2022) 2075.
												 doi: 10.1038/s41467-022-29797-1
											
										
				Q. Jia, E. Liu, L. Jiao, S. Pann, S. Mukerjee, Adv. Mater. 31 (2019) 1805157.
												 doi: 10.1002/adma.201805157
											
										
				P. Chen, T. Zhou, L. Xing, et al., Angew. Chem. Int. Ed. 129 (2017) 625–629.
												 doi: 10.1002/ange.201610119
											
										
				Q. Li, W. Chen, H. Xiao, et al., Adv. Mater. 30 (2018) 1800588.
												 doi: 10.1002/adma.201800588
											
										
				J. Liu, W. Chen, S. Yuan, T. Liu, Q. Wang, Energy Environ. Sci. 17 (2024) 249–259.
												 doi: 10.1039/D3EE03183G
											
										
				J. Roh, A. Cho, S. Kim, et al., ACS Catal. 13 (2023) 9427–9441.
												 doi: 10.1021/acscatal.3c01136
											
										
				A.G. Saputro, A.K. Fajrial, A.L. Maulana, et al., J. Phys. Chem. C 124 (2020) 11383–11391.
												 doi: 10.1021/acs.jpcc.0c00632
											
										
				T. Wu, Y. Wang, H. Zhao, J. Dong, J. Xu, J. Colloid Interface Sci. 603 (2021) 706–715.
												 doi: 10.1016/j.jcis.2021.06.116
											
										
				Y. Yang, H. Zhang, Z. Liang, et al., J. Energy Chem. 44 (2020) 131–137.
												 doi: 10.1016/j.jechem.2019.08.009
											
										
				W. Song, C. Xiao, J. Ding, et al., Adv. Mater. 36 (2023) 2301477.
												 doi: 10.1002/adma.202301477
											
										
				M. Wang, L. Wang, Q. Li, et al., Small 19 (2023) 2300373.
												 doi: 10.1002/smll.202300373
											
										
				Y. Zhang, J. Yang, R. Ge, et al., Coord. Chem. Rev. 461 (2022) 214493.
												 doi: 10.1016/j.ccr.2022.214493
											
										
				G. Chen, R. Lu, C. Li, et al., Adv. Mater. 35 (2023) 2300907.
												 doi: 10.1002/adma.202300907
											
										
				J. Yang, Z. Wang, C. Huang, et al., Angew. Chem. Int. Ed. 60 (2021) 22722–22728.
												 doi: 10.1002/anie.202109058
											
										
				M. Chen, J. Chen, C. Jia, et al., Cell Rep. Phys. Sci. 4 (2023) 101204.
												 doi: 10.1016/j.xcrp.2022.101204
											
										
				P. Yang, J. Li, D.G. Vlachos, S. Caratzoulas, Angew. Chem. Int. Ed. 63 (2023) e202311174.
												 doi: 10.1002/anie.202311174
											
										
				S.Y. Yi, E. Choi, H.Y. Jang, et al., Adv. Mater. 35 (2023) 2302666.
												 doi: 10.1002/adma.202302666
											
										
				R. Jiang, Z. Qiao, H. Xu, D. Cao, Chin. J. Catal. 48 (2023) 224–234.
												 doi: 10.1016/S1872-2067(23)64419-5
											
										
				S. Huang, Z. Qiao, P. Sun, et al., Appl. Catal. B 317 (2022) 121770.
												 doi: 10.1016/j.apcatb.2022.121770
											
										
				Z. Fan, H. Wan, H. Yu, J. Ge, Chin. J. Catal. 54 (2023) 56–87.
												 doi: 10.1016/S1872-2067(23)64538-3
											
										
				C. Brea, G. Hu, ACS Catal. 13 (2023) 4992.
												 doi: 10.1021/acscatal.3c00090
											
										
				P. Zhu, X. Xiong, X. Wang, et al., Nano Lett. 22 (2022) 9507–9515.
												 doi: 10.1021/acs.nanolett.2c03623
											
										
				X. Shu, D. Tan, Y. Wang, J. Ma, J. Zhang, Angew. Chem. Int. Ed. 136 (2024) e202316005.
												 doi: 10.1002/anie.202316005
											
										
				L. Liu, A. Corma, Chem. Rev. 123 (2023) 4855.
												 doi: 10.1021/acs.chemrev.2c00733
											
										
				L. Liu, X. Rao, S. Zhang, J. Zhang, Chem 10 (2024) 1994–2030.
												 doi: 10.1016/j.chempr.2024.06.006
											
										
				K. Kumar, L. Dubau, F. Jaouen, F. Maillard, Chem. Rev. 123 (2023) 9265–9326.
												 doi: 10.1021/acs.chemrev.2c00685
											
										
				H.M. Xu, H.R. Zhu, C.J. Huang, et al., Sci. China: Chem. 67 (2024) 1137–1160.
												 doi: 10.1007/s11426-023-1863-8
											
										
				S. Yin, H. Yi, M. Liu, et al., Nat. Commun. 15 (2024) 6229.
												 doi: 10.1038/s41467-024-50629-x
											
										
				G. Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332 (2011) 443–447.
												 doi: 10.1126/science.1200832
											
										
				H.T. Chung, D.A. Cullen, D. Higgins, et al., Science 357 (2017) 479–484.
												 doi: 10.1126/science.aan2255
											
										
				Q. Wang, Z.Y. Zhou, Y.J. Lai, et al., J. Am. Chem. Soc. 136 (2014) 10882–10885.
												 doi: 10.1021/ja505777v
											
										
				Y.C. Wang, Y. Lai, L. Song, et al., Angew. Chem. Int. Ed. 127 (2015) 10045–10048.
												 doi: 10.1002/ange.201503159
											
										
				G. Chen, P. Liu, Z. Liao, et al., Adv. Mater. 32 (2020) 1907399.
												 doi: 10.1002/adma.201907399
											
										
				G. Chen, Y. An, S. Liu, et al., Energy Environ. Sci. 15 (2022) 2619–2628.
												 doi: 10.1039/d2ee00542e
											
										
				J. Herranz, F. Jaouen, M. Lefèvre, et al., J. Phys. Chem. C 115 (2011) 16087–16097.
												 doi: 10.1021/jp2042526
											
										
				Y. Irmawati, B. Prakoso, F. Balqis, et al., Energy Fuels 37 (2023) 4858–4877.
												 doi: 10.1021/acs.energyfuels.2c04272
											
										
				B. Shi, H. Li, X. Fu, et al., Purif. Technol. 335 (2024) 125866.
												 doi: 10.1016/j.seppur.2023.125866
											
										
				J. Wang, B. Deng, H. Chen, X. Wang, J. Zheng, Environ. Sci. Technol. 43 (2009) 5223–5228.
												 doi: 10.1021/es803710k
											
										
				E.T. Kang, K.G. Neoh, K.L. Tan, Prog. Polym. Sci. 23 (1998) 277–324.
												 doi: 10.1016/S0079-6700(97)00030-0
											
										
				H. Jin, R. Yu, P. Ji, et al., Chem. Sci. 15 (2024) 7259–7268.
												 doi: 10.1039/d4sc01329h
											
										
				X. Wang, L. Zhang, M. Xiao, et al., Chin. Chem. Lett. 34 (2023) 107455.
												 doi: 10.1016/j.cclet.2022.04.053
											
										
				T. Yang, Y. Chen, Y. Liu, X. Liu, S. Gao, Chin. Chem. Lett. 33 (2022) 2171–2177.
												 doi: 10.1016/j.cclet.2021.09.014
											
										
				S. He, J. Wang, C. Sun, J. Colloid Interface Sci. 677 (2025) 771–780.
												 doi: 10.1016/j.jcis.2024.08.020
											
										
				J. Wei, J. Wang, W. Zhang, Y, Mao, C. Sun, Chem. Eur. J. 31 (2025) e202403445.
												 doi: 10.1002/chem.202403445
											
										
				J. Han, H. Bao, J.Q. Wang, et al., Appl. Catal. B 280 (2021) 119411.
												 doi: 10.1016/j.apcatb.2020.119411
											
										
				J. Han, J. Bian, C. Sun, Research 2020 (2020) 9512763.
												 doi: 10.34133/2020/9512763
											
										
				J. Han, X. Meng, L. Lu, et al., Adv. Funct. Mater. 29 (2019) 1808872.
												 doi: 10.1002/adfm.201808872
											
										
				H. Jin, X. Zhao, L. Liang, et al., Small 17 (2021) 2101001.
												 doi: 10.1002/smll.202101001
											
										
						
						
						
	                Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Xinyuan Li , Zhuozhu Li , Wenzhong Huang , Jiantao Li , Wei Zhang , Shihao Feng , Hao Fan , Zhuo Chen , Sungsik Lee , Congcong Cai , Liang Zhou . Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction. Chinese Chemical Letters, 2025, 36(9): 110716-. doi: 10.1016/j.cclet.2024.110716
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Jinhui Zhang , Jianglin Liu , Jie Ran , Xuliang Lin , Huan Wang , Xueqing Qiu . Oxidative ammonolysis modified lignin-derived nitrogen-doped carbon-supported Co/Fe composites as bifunctional electrocatalyst for Zn-air batteries. Chinese Chemical Letters, 2025, 36(10): 110403-. doi: 10.1016/j.cclet.2024.110403
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Xiaoya Cui , Yanchang Liu , Qiang Li , He Zhu , Shibo Xi , Jianrong Zeng . Ultrafast crystallinity engineering of PtCo3 alloy for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(5): 110069-. doi: 10.1016/j.cclet.2024.110069
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141