Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions
- 
	                	
	                	* Corresponding author.
 
E-mail addresses: AhmedN14@cardiff.ac.uk, nisarhej@gmail.com (N. Ahmed).
	            Citation:
	            
		            Sadia Rani, Najoua Sbei, Seyfeddine Rahali, Samina Aslam, Tomas Hardwick, Nisar Ahmed. Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions[J]. Chinese Chemical Letters,
							;2025, 36(11): 111216.
						
							doi:
								10.1016/j.cclet.2025.111216
						
					
				
					
				
	        
	                
				M. Faraday, Annalen der Physik 109 (1834) 149–189.
												 doi: 10.1002/andp.18341090803
											
										
				W.M. Sudduth, Ambix 27 (1980) 26–35.
												 doi: 10.1179/amb.1980.27.1.26
											
										
J.O.M. Bockris, A.K. Reddy, Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science, Springer Science & Business Media, 1998.
				M. Yan, Y. Kawamata, P.S. Baran, Chem. Rev. 117 (2017) 13230–13319.
												 doi: 10.1021/acs.chemrev.7b00397
											
										
				A. Wiebe, T. Gieshoff, S. Möhle, et al., Angew. Chem. Int. Ed. 57 (2018) 5594–5619.
												 doi: 10.1002/anie.201711060
											
										
				H. Lund, J. Electrochem. Soc. 149 (2002) S21.
												 doi: 10.1149/1.1462037
											
										
				L.F. Novaes, J. Liu, Y. Shen, et al., Chem. Soc. Rev. 50 (2021) 7941–8002.
												 doi: 10.1039/d1cs00223f
											
										
				H.J. Schäfer, Comptes Rendus Chim. 14 (2011) 745–765.
												 doi: 10.1016/j.crci.2011.01.002
											
										
				E.J. Horn, B.R. Rosen, P.S. Baran, ACS Cent. Sci. 2 (2016) 302–308.
												 doi: 10.1021/acscentsci.6b00091
											
										
				S. Rani, S. Aslam, K. Lal, et al., Chem. Rec. 24 (2024) e202300331.
												 doi: 10.1002/tcr.202300331
											
										
				C. Schotten, T.P. Nicholls, R.A. Bourne, et al., Green Chem. 22 (2020) 3358–3375.
												 doi: 10.1039/d0gc01247e
											
										
				M.C. Leech, K. Lam, Nat. Rev. Chem. 6 (2022) 275–286.
												 doi: 10.1038/s41570-022-00372-y
											
										
				G. Hilt, ChemElectroChem 7 (2020) 395–405.
												 doi: 10.1002/celc.201901799
											
										
				C. Kingston, M.D. Palkowitz, Y. Takahira, et al., Acc. Chem. Res. 53 (2019) 72–83.
										
				Y. Kawamata, P.S. Baran, Joule 4 (2020) 701–704.
												 doi: 10.1016/j.joule.2020.02.002
											
										
				F. Gomollón-Bel, Chem. Int. 41 (2019) 12–17.
												 doi: 10.1515/ci-2019-0203
											
										
				L. Capaldo, L.L. Quadri, D. Ravelli, Angew. Chem. Int. Ed. 58 (2019) 17508–17510.
												 doi: 10.1002/anie.201910348
											
										
				C.F. Carter, H. Lange, S.V. Ley, et al., Org. Process Res. Dev. 14 (2010) 393–404.
												 doi: 10.1021/op900305v
											
										
				D.S. Cardoso, B. Sljukic, D.M. Santos, C.A. Sequeira, Org. Process Res. Dev. 21 (2017) 1213–1226.
												 doi: 10.1021/acs.oprd.7b00004
											
										
				Y. Yuan, A. Lei, Nat. Commun. 11 (2020) 802.
												 doi: 10.1038/s41467-020-14322-z
											
										
				S. Lips, S.R. Waldvogel, ChemElectroChem 6 (2019) 1649–1660.
												 doi: 10.1002/celc.201801620
											
										
				S. Möhle, M. Zirbes, E. Rodrigo, et al., Angew. Chem. Int. Ed. 57 (2018) 6018–6041.
												 doi: 10.1002/anie.201712732
											
										
				M. Yan, Y. Kawamata, P.S. Baran, Angew. Chem. Int. Ed. 57 (2018) 4149–4155.
												 doi: 10.1002/anie.201707584
											
										
				D. Pollok, S.R. Waldvogel, Chem. Sci. 11 (2020) 12386–12400.
												 doi: 10.1039/d0sc01848a
											
										
				B. Huang, Z. Sun, G. Sun, eScience 2 (2022) 243–277.
												 doi: 10.1016/j.esci.2022.04.006
											
										
R. Holze, Organic electrochemistry, Series: Encyclopedia of Electrochemistry, Wiley Online Library, 2005, pp. 2832–2833.
				H.R. Stephen, C. Schotten, T.P. Nicholls, et al., Org. Process Res. Dev. 24 (2020) 1084–1089.
												 doi: 10.1021/acs.oprd.0c00091
											
										
				S. Maljuric, W. Jud, C.O. Kappe, D. Cantillo, J. Flow Chem. 10 (2020) 181–190.
												 doi: 10.1007/s41981-019-00050-z
											
										
				Y. Takahira, M. Chen, Y. Kawamata, et al., Synlett 30 (2019) 1178–1182.
												 doi: 10.1055/s-0037-1611737
											
										
J. Jörissen, Practical Aspects of Preparative Scale Electrolysis, in: Encyclopedia of Electrochemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Wiley Online Libaray, 2007.
T. Fuchigami, M. Atobe, S. Inagi, Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices, John Wiley & Sons, 2014.
A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, 2022.
				D. Wang, T. Jiang, H. Wan, et al., Angew. Chem. Int. Ed. 61 (2022) e202201543.
												 doi: 10.1002/anie.202201543
											
										
				Y. Yuan, J.C. Qi, D.X. Wang, et al., CCS Chem. 4 (2022) 2674–2685.
												 doi: 10.31635/ccschem.021.202101350
											
										
				E.O. Bortnikov, B.S. Smith, D.M. Volochnyuk, S.N. Semenov, Chem. Eur. J. 29 (2023) e202203825.
												 doi: 10.1002/chem.202203825
											
										
				J. Fährmann, G. Hilt, Angew. Chem. Int. Ed. 60 (2021) 20313–20317.
												 doi: 10.1002/anie.202107148
											
										
				Y. Hioki, M. Costantini, J. Griffin, et al., Science 380 (2023) 81–87.
												 doi: 10.1126/science.adf4762
											
										
				Y. Kawamata, P.S. Baran, J. Synth. Org. Chem. Japan 81 (2023) 1020–1027.
												 doi: 10.5059/yukigoseikyokaishi.81.1020
											
										
				A.F. Garrido-Castro, Y. Hioki, Y. Kusumoto, et al., Angew. Chem. Int. Ed. 62 (2023) e202309157.
												 doi: 10.1002/anie.202309157
											
										
				Y. Kawamata, K. Hayashi, E. Carlson, et al., J. Am. Chem. Soc. 143 (2021) 16580–16588.
												 doi: 10.1021/jacs.1c06572
											
										
				D.E. Blanco, B. Lee, M.A. Modestino, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 17683–17689.
												 doi: 10.1073/pnas.1909985116
											
										
				S. Bera, S. Sen, D. Maiti, J. Am. Chem. Soc. 146 (2024) 25166–25175.
												 doi: 10.1021/jacs.4c08826
											
										
				S.R. Waldvogel, S. Lips, M. Selt, B. Riehl, C.J. Kampf, Chem. Rev. 118 (2018) 6706–6765.
												 doi: 10.1021/acs.chemrev.8b00233
											
										
				C.F. Blanford, R.S. Heath, F.A. Armstrong, Chem. Commun. (2007) 1710–1712.
												 doi: 10.1039/b703114a
											
										
				M.K. Debe, Nature 486 (2012) 43–51.
												 doi: 10.1038/nature11115
											
										
				S.J. Yoo, L.J. Li, C.C. Zeng, R.D. Little, Angew. Chem. 127 (2015) 3815–3818.
												 doi: 10.1002/ange.201410207
											
										
				R. Francke, R.D. Little, Chem. Soc. Rev. 43 (2014) 2492–2521.
												 doi: 10.1039/c3cs60464k
											
										
				N. Sauermann, T.H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 8 (2018) 7086–7103.
												 doi: 10.1021/acscatal.8b01682
											
										
S. Herold, S. Möhle, M. Zirbes, et al., Electrochemical Amination of Less-Activated Alkylated Arenes Using Boron-Doped Diamond Anodes, Wiley Online Library, 2016.
				V. Colic, A.S. Bandarenka, ACS Catal. 6 (2016) 5378–5385.
												 doi: 10.1021/acscatal.6b00997
											
										
				A. Dribinskii, M. Tarasevich, V. Kazarinov, Mater. Chem. Phys. 22 (1989) 377–400.
												 doi: 10.1016/0254-0584(89)90006-0
											
										
				M. Okajima, S. Suga, K. Itami, J.I. Yoshida, J. Am. Chem. Soc. 127 (2005) 6930–6931.
												 doi: 10.1021/ja050414y
											
										
				H. Tomiyasu, H. Shikata, K. Takao, et al., Sci. Rep. 7 (2017) 45048.
												 doi: 10.1038/srep45048
											
										
				M. Chhetri, S. Sultan, C. Rao, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 8986–8990.
												 doi: 10.1073/pnas.1710443114
											
										
				M. Wickramasinghe, I.Z. Kiss, J. Electrochem. Soc. 163 (2016) H1171.
												 doi: 10.1149/2.0471614jes
											
										
				M.A. Rahim, R.A. Hameed, M. Khalil, J. Power Sources 134 (2004) 160–169.
												 doi: 10.1016/j.jpowsour.2004.02.034
											
										
				S. Bull, A. Matthews, Diam. Relat. Mater. 1 (1992) 1049–1064.
												 doi: 10.1016/0925-9635(92)90075-Y
											
										
				N.R. Stradiotto, K.E. Toghill, L. Xiao, A. Moshar, R.G. Compton, Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal. 21 (2009) 2627–2633.
												 doi: 10.1002/elan.200900325
											
										
				P. Joshi, P. Riley, K.Y. Goud, R.K. Mishra, R. Narayan, Curr. Opin. Electrochem. 32 (2022) 100920.
												 doi: 10.1016/j.coelec.2021.100920
											
										
				T. Kashiwada, T. Watanabe, Y. Ootani, Y. Tateyama, Y. Einaga, ACS Appl. Mater. Interfaces 8 (2016) 28299–28305.
												 doi: 10.1021/acsami.5b11638
											
										
				J. Roeser, N.F. Alting, H.P. Permentier, A.P. Bruins, R. Bischoff, Anal. Chem. 85 (2013) 6626–6632.
												 doi: 10.1021/ac303795c
											
										
				S. Anantharaj, S. Chatterjee, K.C. Swaathini, et al., ACS Sustain. Chem. Eng. 6 (2018) 2498–2509.
												 doi: 10.1021/acssuschemeng.7b03964
											
										
				E. Oberrauch, L. Eberson, J. Appl. Electrochem. 16 (1986) 575–582.
												 doi: 10.1007/BF01006852
											
										
				S. Anantharaj, M. Venkatesh, A.S. Salunke, et al., ACS Sustain. Chem. Eng. 5 (2017) 10072–10083.
												 doi: 10.1021/acssuschemeng.7b02090
											
										
				G. Laudadio, E. Barmpoutsis, C. Schotten, et al., J. Am. Chem. Soc. 141 (2019) 5664–5668.
												 doi: 10.1021/jacs.9b02266
											
										
				P. Sartori, N. Ignat’ev, J. Fluor. Chem. 87 (1998) 157–162.
												 doi: 10.1016/S0022-1139(97)00139-5
											
										
				P.E. Karthik, I. Alessandri, A. Sengeni, J. Electrochem. Soc. 167 (2020) 125503.
												 doi: 10.1149/1945-7111/abb0f2
											
										
				C. Rousseau, F. Baraud, L. Leleyter, O. Gil, J. Hazard. Mater. 167 (2009) 953–958.
												 doi: 10.1016/j.jhazmat.2009.01.083
											
										
				J. Chaussard, J.C. Folest, J.Y. Nedelec, et al., Synthesis (1990) 369–381 1990.
										
K. Izutsu, Electrochemistry in Nonaqueous Solutions, John Wiley & Sons, 2009.
				V.V. Pavlishchuk, A.W. Addison, Inorg. Chim. Acta 298 (2000) 97–102.
												 doi: 10.1016/S0020-1693(99)00407-7
											
										
				D. Prat, J. Hayler, A. Wells, Green Chem. 16 (2014) 4546–4551.
												 doi: 10.1039/C4GC01149J
											
										
				M. Kathiresan, D. Velayutham, Chem. Commun. 51 (2015) 17499–17516.
												 doi: 10.1039/C5CC06961K
											
										
				D. Pletcher, R.A. Green, R.C. Brown, Chem. Rev. 118 (2017) 4573–4591.
										
				N. Elgrishi, K.J. Rountree, B.D. McCarthy, et al., J. Chem. Educ. 95 (2018) 197–206.
												 doi: 10.1021/acs.jchemed.7b00361
											
										
R.E. White, Electrochemical Cell Design, Springer Science & Business Media, 2012.
				C. Ma, P. Fang, D. Liu, et al., Chem. Sci. 12 (2021) 12866–12873.
												 doi: 10.1039/d1sc04011a
											
										
				H. Senboku, M. Hayama, H. Matsuno, Beilstein J. Org. Chem. 18 (2022) 1040–1046.
												 doi: 10.3762/bjoc.18.105
											
										
				M.C. Leech, A.D. Garcia, A. Petti, A.P. Dobbs, K. Lam, React. Chem. Eng. 5 (2020) 977–990.
												 doi: 10.1039/d0re00064g
											
										
				H. Salehzadeh, D. Nematollahi, H. Hesari, Green Chem. 15 (2013) 2441–2446.
												 doi: 10.1039/c3gc40954f
											
										
H. Lund, M.M. Baizer, Organic Electrochemistry: an Introduction and a Guide, 3rd ed., New York, 1983.
				A. Wiebe, B. Riehl, S. Lips, R. Franke, S.R. Waldvogel, Sci. Adv. 3 (2017) eaao3920.
												 doi: 10.1126/sciadv.aao3920
											
										
				B.H. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Nat. Commun. 10 (2019) 5599.
												 doi: 10.1038/s41467-019-13415-8
											
										
				S. Arndt, D. Weis, K. Donsbach, S.R. Waldvogel, Angew. Chem. Int. Ed. 59 (2020) 8036–8041.
												 doi: 10.1002/anie.202002717
											
										
				S.H. Park, M. Ju, A.J. Ressler, et al., Aldrichimica Acta 54 (2021) 17–27.
										
				C. Gütz, M. Bänziger, C. Bucher, T.R. Galvão, S.R. Waldvogel, Org. Process Res. Dev. 19 (2015) 1428–1433.
												 doi: 10.1021/acs.oprd.5b00272
											
										
				C.M. Cirtiu, A. Brisach-Wittmeyer, H. Ménard, J. Catal. 245 (2007) 191–197.
												 doi: 10.1016/j.jcat.2006.10.010
											
										
				A. Sáez, V. García-García, J. Solla-Gullón, A. Aldaz, V. Montiel, Electrochim. Acta 91 (2013) 69–74.
												 doi: 10.1016/j.electacta.2012.12.097
											
										
				R. Bandichhor, A. Bhattacharya, L. Diorazio, et al., Org. Process Res. Dev. 16 (2012) 1887–1896.
												 doi: 10.1021/op300251d
											
										
				C.M. Cirtiu, H.O. Hassani, N.A. Bouchard, P.A. Rowntree, H. Ménard, Langmuir 22 (2006) 6414–6421.
												 doi: 10.1021/la0519002
											
										
				G. St-Pierre, A. Chagnes, N.A. Bouchard, et al., Langmuir 20 (2004) 6365– 6373.
												 doi: 10.1021/la048977v
											
										
				F. Marken, A.J. Cresswell, S.D. Bull, Chem. Rec. 21 (2021) 2585–2600.
												 doi: 10.1002/tcr.202100047
											
										
				S. Li, X. Sun, Z. Yao, et al., Adv. Funct. Mater. 29 (2019) 1904780.
												 doi: 10.1002/adfm.201904780
											
										
				M.M. Baizer, R. Hallcher, J. Electrochem. Soc. 123 (1976) 809.
												 doi: 10.1149/1.2132937
											
										
				C.A. Paddon, M. Atobe, T. Fuchigami, et al., J. Appl. Electrochem. 36 (2006) 617–634.
												 doi: 10.1007/s10800-006-9122-2
											
										
				Y.Y. Jiang, G.Y. Dou, L.S. Zhang, Adv. Synth. Catal. 361 (2019) 5170–5175.
												 doi: 10.1002/adsc.201901011
											
										
				R. Matthessen, J. Fransaer, K. Binnemans, D.E. De Vos, Beilstein J. Org. Chem. 10 (2014) 2484–2500.
												 doi: 10.3762/bjoc.10.260
											
										
H. Putter, H. Hannebaum, Preparation of Phthalides, United States Patent, 2000 US6063256A.
				X.H. Chadderdon, D.J. Chadderdon, T. Pfennig, B.H. Shanks, W. Li, Green Chem. 21 (2019) 6210–6219.
												 doi: 10.1039/c9gc02264c
											
										
				Y. Ma, X. Yao, L. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 16548–16552.
												 doi: 10.1002/anie.201909642
											
										
				Y. Liu, L. Xue, B. Shi, et al., Chem. Commun. 55 (2019) 14922–14925.
												 doi: 10.1039/c9cc08528a
											
										
				W. Li, T. Nonaka, J. Electrochem. Soc. 146 (1999) 592.
												 doi: 10.1149/1.1391649
											
										
				J. Strehl, M.L. Abraham, G. Hilt, Angew. Chem. Int. Ed. 60 (2021) 9996–10000.
												 doi: 10.1002/anie.202016413
											
										
W. Zhang, N. Hong, L. Song, N. Fu, Reaching the Full Potential of Electroorganic Synthesis By Paired Electrolysis, Wiley Online Library, 2021.
				K.D. Moeller, Chem. Rev. 118 (2018) 4817–4833.
												 doi: 10.1021/acs.chemrev.7b00656
											
										
				C. Costentin, J.M. Savéant, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 11147–11152.
												 doi: 10.1073/pnas.1904439116
											
										
				M.N. Jackson, Y. Surendranath, Acc. Chem. Res. 52 (2019) 3432–3441.
												 doi: 10.1021/acs.accounts.9b00439
											
										
				J.M. Savéant, Chem. Rev. 108 (2008) 2348–2378.
												 doi: 10.1021/cr068079z
											
										
				A. Yazdani, G.G. Botte, Curr. Opin. Chem. Eng. 29 (2020) 89–95.
												 doi: 10.1016/j.coche.2020.07.003
											
										
				D. Xu, K. Li, B. Jia, et al., Carbon Energy 5 (2023) e230.
												 doi: 10.1002/cey2.230
											
										
				R. Francke, R.D. Little, J. Am. Chem. Soc. 136 (2014) 427–435.
												 doi: 10.1021/ja410865z
											
										
				S. Dapperheld, E. Steckhan, K.H.G. Brinkhaus, T. Esch, Chem. Berichte 124 (1991) 2557–2567.
												 doi: 10.1002/cber.19911241127
											
										
				M. Uchimiya, A.T. Stone, Chemosphere 77 (2009) 451–458.
												 doi: 10.1016/j.chemosphere.2009.07.025
											
										
				R. Francke, R.D. Little, ChemElectroChem 6 (2019) 4373–4382.
												 doi: 10.1002/celc.201900432
											
										
				T. Broese, R. Francke, Org. Lett. 18 (2016) 5896–5899.
												 doi: 10.1021/acs.orglett.6b02979
											
										
				X.Y. Qian, S.Q. Li, J. Song, H.C. Xu, ACS Catal. 7 (2017) 2730–2734.
												 doi: 10.1021/acscatal.7b00426
											
										
				Z.J. Wu, H.C. Xu, Angew. Chem. 129 (2017) 4812–4816.
												 doi: 10.1002/ange.201701329
											
										
				Z.X. Wu, G.W. Hu, Y.X. Luan, ACS Catal. 12 (2022) 11716–11733.
												 doi: 10.1021/acscatal.2c03261
											
										
				F. Bai, N. Wang, Y. Bai, et al., J. Org. Chem. 88 (2023) 2985–2998.
												 doi: 10.1021/acs.joc.2c02700
											
										
				Y. Hussain, D. Sharma, N. Kotwal, I. Kumar, P. Chauhan, ChemSusChem 15 (2022) e202200415.
												 doi: 10.1002/cssc.202200415
											
										
				A. Murtaza, Z. Ulhaq, B. Shirinfar, et al., Chem. Rec. 23 (2023) e202300119.
												 doi: 10.1002/tcr.202300119
											
										
				Y. Lai, A. Halder, J. Kim, T.J. Hicks, P.J. Milner, Angew. Chem. 135 (2023) e202310246.
												 doi: 10.1002/ange.202310246
											
										
				A.A. Folgueiras-Amador, A.E. Teuten, M. Salam-Perez, et al., Angew. Chem. Int. Ed. 61 (2022) e202203694.
												 doi: 10.1002/anie.202203694
											
										
				Y. Wang, Z. Zhao, D. Pan, et al., Angew. Chem. Int. Ed. 61 (2022) e202210201.
												 doi: 10.1002/anie.202210201
											
										
				K. Yang, T. Feng, Y. Qiu, Angew. Chem. Int. Ed. 62 (2023) e202312803.
												 doi: 10.1002/anie.202312803
											
										
G.M. Martins, N. Sbei, G.C. Zimmer, N. Ahmed, C–H activation/functionalization via metalla-electrocatalysis, in: L. Khotseng (Ed.), Electrocatalysis and Electrocatalysts for a Cleaner Environment-Fundamentals and Applications, IntechOpen, 2021, pp. 103–124.
				L. Ackermann, Acc. Chem. Res. 53 (2019) 84–104.
										
				C.A. Malapit, M.B. Prater, J.R. Cabrera-Pardo, et al., Chem. Rev. 122 (2021) 3180–3218.
										
				S. Zhang, M. Findlater, ACS Catal. 13 (2023) 8731–8751.
												 doi: 10.1021/acscatal.3c01221
											
										
				S. Changmai, S. Sultana, A.K. Saikia, ChemistrySelect 8 (2023) e202203530.
												 doi: 10.1002/slct.202203530
											
										
				T. Kerackian, D. Bouyssi, G. Pilet, et al., ACS Catal. 12 (2022) 12315–12325.
												 doi: 10.1021/acscatal.2c03268
											
										
				J. Fu, W. Lundy, R. Chowdhury, et al., ACS Catal. 13 (2023) 9336–9345.
												 doi: 10.1021/acscatal.3c01939
											
										
				F. Lian, K. Xu, W. Meng, et al., Chem. Commun. 55 (2019) 14685–14688.
												 doi: 10.1039/c9cc07840a
											
										
				T. Koyanagi, A. Herath, A. Chong, et al., J. Loren, Org. Lett. 21 (2019) 816–820.
												 doi: 10.1021/acs.orglett.8b04090
											
										
				H. Li, C.P. Breen, H. Seo, et al., Org. Lett. 20 (2018) 1338–1341.
												 doi: 10.1021/acs.orglett.8b00070
											
										
				S. Manabe, C.M. Wong, C.S. Sevov, J. Am. Chem. Soc. 142 (2020) 3024–3031.
												 doi: 10.1021/jacs.9b12112
											
										
D. Pletcher, F.C. Walsh, Industrial Electrochemistry, Springer Science & Business Media, 2012.
				M.J. Orella, Y. Román-Leshkov, F.R. Brushett, Curr. Opin. Chem. Eng. 20 (2018) 159–167.
												 doi: 10.1016/j.coche.2018.05.002
											
										
				C. Gütz, A. Stenglein, S.R. Waldvogel, Org. Process Res. Dev. 21 (2017) 771–778.
												 doi: 10.1021/acs.oprd.7b00123
											
										
				A.A. Folgueiras-Amador, T. Wirth, J. Flow Chem. 7 (2017) 94–95.
												 doi: 10.1556/1846.2017.00020
											
										
				M. Elsherbini, T. Wirth, Acc. Chem. Res. 52 (2019) 3287–3296.
												 doi: 10.1021/acs.accounts.9b00497
											
										
				B. Gleede, M. Selt, C. Gütz, A. Stenglein, S.R. Waldvogel, Org. Process Res. Dev. 24 (2019) 1916–1926.
										
				A.R. Bogdan, A.W. Dombrowski, J. Med. Chem. 62 (2019) 6422–6468.
												 doi: 10.1021/acs.jmedchem.8b01760
											
										
				M. Atobe, H. Tateno, Y. Matsumura, Chem. Rev. 118 (2017) 4541–4572.
										
T. Glasnov, Continuous-flow Chemistry in the Research Laboratory, Springer, 2016.
				M.B. Plutschack, B.u. Pieber, K. Gilmore, P.H. Seeberger, Chem. Rev. 117 (2017) 11796–11893.
												 doi: 10.1021/acs.chemrev.7b00183
											
										
				N. Tanbouza, T. Ollevier, K. Lam, iScience 23 (2020) 101720.
												 doi: 10.1016/j.isci.2020.101720
											
										
				T. Noël, Y. Cao, G. Laudadio, Acc. Chem. Res. 52 (2019) 2858–2869.
												 doi: 10.1021/acs.accounts.9b00412
											
										
				T.H. Rehm, Chem. Eur. J. 26 (2020) 16952–16974.
												 doi: 10.1002/chem.202000381
											
										
				J. Hartwig, J.B. Metternich, N. Nikbin, A. Kirschning, S.V. Ley, Org. Biomol. Chem. 12 (2014) 3611–3615.
												 doi: 10.1039/C4OB00662C
											
										
				M. Elsherbini, B. Winterson, H. Alharbi, et al., Angew. Chem. Int. Ed. 58 (2019) 9811–9815.
												 doi: 10.1002/anie.201904379
											
										
				K.J. Frankowski, R. Liu, G.L. Milligan, K.D. Moeller, J. Aubé, Angew. Chem. Int. Ed. 54 (2015) 10555–10558.
												 doi: 10.1002/anie.201504775
											
										
				T. Gieshoff, V. Trieu, J. Heijl, S.R. Waldvogel, Beilstein J. Org. Chem. 14 (2018) 1578–1582.
												 doi: 10.3762/bjoc.14.135
											
										
				A. Shatskiy, H. Lundberg, M.D. Kärkäs, ChemElectroChem 6 (2019) 4067–4092.
												 doi: 10.1002/celc.201900435
											
										
				D.R. Abernethy, A.J. DeStefano, T.L. Cecil, et al., Pharm. Res. 27 (2010) 750–755.
												 doi: 10.1007/s11095-010-0080-3
											
										
				B.R. Rosen, E.W. Werner, A.G. O’Brien, P.S. Baran, J. Am. Chem. Soc. 136 (2014) 5571–5574.
												 doi: 10.1021/ja5013323
											
										
				A. Lipp, M. Selt, D. Ferenc, et al., Org. Lett. 21 (2019) 1828–1831.
												 doi: 10.1021/acs.orglett.9b00419
											
										
				A. Lipp, D. Ferenc, C. Gütz, et al., Angew. Chem. Int. Ed. 57 (2018) 11055–11059.
												 doi: 10.1002/anie.201803887
											
										
J.I. Yosida, Encyclopedia of Applied Electrochemistry, Springer Nature, 2014, pp. 386–392.
				Q. Lin, L. Li, S. Luo, Chem. Eur. J. 25 (2019) 10033–10044.
												 doi: 10.1002/chem.201901284
											
										
				X. Chang, Q. Zhang, C. Guo, Angew. Chem. 132 (2020) 12712–12722.
												 doi: 10.1002/ange.202000016
											
										
				M. Ghosh, V.S. Shinde, M. Rueping, Beilstein J. Org. Chem. 15 (2019) 2710–2746.
												 doi: 10.3762/bjoc.15.264
											
										
				S. Assavapanumat, M. Ketkaew, A. Kuhn, C. Wattanakit, J. Am. Chem. Soc. 141 (2019) 18870–18876.
												 doi: 10.1021/jacs.9b10507
											
										
				P. Xiong, M. Hemming, S.I. Ivlev, E. Meggers, J. Am. Chem. Soc. 144 (2022) 6964–6971.
												 doi: 10.1021/jacs.2c01686
											
										
				T. Osa, Y. Kashiwagi, T. Ono, F. Kurashima, U. Akiba, Int. J. Soc. Mater. Eng. Resour. 20 (2014) 49–53.
												 doi: 10.5188/ijsmer.20.49
											
										
				C. Wattanakit, A. Kuhn, Chem. Eur. J. 26 (2020) 2993–3003.
												 doi: 10.1002/chem.201904835
											
										
				M. Kuroboshi, H. Yoshihisa, M.N. Cortona, et al., Tetrahedron Lett. 41 (2000) 8131–8135.
												 doi: 10.1016/S0040-4039(00)01419-2
											
										
				W.C. Gao, Z.Y. Xiong, S. Pirhaghani, T. Wirth, Synthesis 51 (2019) 276– 284.
												 doi: 10.1055/s-0037-1610373
											
										
				Q. Zhang, X. Chang, L. Peng, C. Guo, Angew. Chem. Int. Ed. 58 (2019) 6999–7003.
												 doi: 10.1002/anie.201901801
											
										
				H. Lin, Y. Tang, S. Dong, R. Lang, H. Chen, Catal. Sci. Technol. 10 (2020) 2145–2151.
												 doi: 10.1039/d0cy00081g
											
										
				P. Zhao, Y. Yin, Chin. J. Org. Chem. 23 (2003) 628–635.
										
				K. Yamamoto, M. Kuriyama, O. Onomura, Acc. Chem. Res. 53 (2019) 105–120.
												 doi: 10.15261/serdj.26.105
											
										
				T. Shono, H. Hamaguchi, Y. Matsumura, J. Am. Chem. Soc. 97 (1975) 4264–4268.
												 doi: 10.1021/ja00848a020
											
										
				J.I. Yoshida, S. Isoe, Tetrahedron Lett. 28 (1987) 6621–6624.
												 doi: 10.1016/S0040-4039(00)96929-6
											
										
				H. Sun, K.D. Moeller, Org. Lett. 4 (2002) 1547–1550.
												 doi: 10.1021/ol025776e
											
										
				D. Karipal Padinjare Veedu, L.A. Connal, L.R. Malins, Org. Lett. 25 (2023) 3633–3638.
												 doi: 10.1021/acs.orglett.3c00988
											
										
A. Ray, A Handbook of Elementary Electrochemistry, LAP LAMBERT Academic Publishing, 2017.
				K. Lam, W.E. Geiger, J. Org. Chem. 78 (2013) 8020–8027.
												 doi: 10.1021/jo401263z
											
										
				C.R. McElroy, A. Constantinou, L.C. Jones, L. Summerton, J.H. Clark, Green Chem. 17 (2015) 3111–3121.
												 doi: 10.1039/C5GC00340G
											
										
J. Conti, P. Holtberg, J. Diefenderfer, et al., International Energy Outlook 2016 With Projections to 2040, 2016.
				C. Sequeira, D. Santos, J. Braz. Chem. Soc. 20 (2009) 387–406.
												 doi: 10.1590/S0103-50532009000300002
											
										
				G.G. Botte, Electrochem. Soc. Interface 23 (2014) 49–55.
												 doi: 10.1149/2.F04143if
											
										
D. Pletcher, F.C. Walsh, Electrochemical engineering, in: Industrial Electrochemistry, Springer, Dordrecht, 1993, pp. 60–172.
				D. Danly, J. Electrochem. Soc. 131 (1984) 435C.
												 doi: 10.1149/1.2115324
											
										
G.G. Botte, D.A. Daramola, M. Muthuvel, 9.14 Preparative electrochemistry for organic synthesis, in: Paul Knochel (Ed.), Comprehensive Organic Synthesis, 2nd Ed., Elsevier, 2014, pp. 351–389.
H. Lund, O. Hammerich, Organic Electrochemistry, Fourth Edition, Marcel Dekker, New York, 2001.
				H.B. Gray, Nat. Chem. 1 (2009) 7.
												 doi: 10.1038/nchem.141
											
										
				B. O’regan, M. Grätzel, Nature 353 (1991) 737–740.
												 doi: 10.1038/353737a0
											
										
				R.C. McAtee, E.A. Noten, C.R.J. Stephenson, Nat. Commun. 11 (2020) 1–8.
												 doi: 10.1038/s41467-019-13993-7
											
										
				J.K. Matsui, D.N. Primer, G.A. Molander, Chem. Sci. 8 (2017) 3512–3522.
												 doi: 10.1039/C7SC00283A
											
										
				Y. Qiu, A. Scheremetjew, L.H. Finger, L. Ackermann, Chem. Eur. J. 26 (2020) 3241–3246.
												 doi: 10.1002/chem.201905774
											
										
				L. Qian, M. Shi, Chem. Commun. 59 (2023) 3487–3506.
												 doi: 10.1039/d3cc00437f
											
										
M.S. Platz, R.A. Moss, M. Jones Jr, Reviews of Reactive Intermediate Chemistry, John Wiley & Sons, 2007.
A. Albini, M. Fagnoni, Photochemically-generated Intermediates in Synthesis, John Wiley & Sons, 2013.
				M.A. Ischay, T.P. Yoon, Eur. J. Org. Chem. (2012) 3359–3372 2012.
												 doi: 10.1002/ejoc.201101071
											
										
W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, 2nd Edition, 2001, pp. 3–293.
				K. Vinodgopal, S. Hotchandani, P.V. Kamat, J. Phys. Chem. 97 (1993) 9040–9044.
												 doi: 10.1021/j100137a033
											
										
				D.H. Kim, M.A. Anderson, Environ. Sci. Technol. 28 (1994) 479–483.
												 doi: 10.1021/es00052a021
											
										
				I.U. Haque, J.F. Rusling, Chemosphere 26 (1993) 1301–1309.
												 doi: 10.1016/0045-6535(93)90183-6
											
										
				S. Ichikawa, R. Doi, Catal. Today 27 (1996) 271–277.
												 doi: 10.1016/0920-5861(95)00198-0
											
										
				P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50 (2011) 2904–2939.
												 doi: 10.1002/anie.201001374
											
										
				J. Liu, L. Lu, D. Wood, et al., Org. Chem. Front 7 (2020) 1895–1902.
												 doi: 10.1039/D0QO00486C
											
										
				T. Hardwick, N. Ahmed, ACS Sustain Chem. Eng. 9 (2021) 4324–4340.
												 doi: 10.1021/acssuschemeng.0c08434
											
										
				F. Wang, S.S. Stahl, Angew. Chem. Int. Ed. 58 (2019) 6385–6390.
												 doi: 10.1002/anie.201813960
											
										
				J.I. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 108 (2008) 2265–2299.
												 doi: 10.1021/cr0680843
											
										
				T. Pokhrel, B. BK, R. Giri, A. Adhikari, N. Ahmed, Chem. Rec. 22 (2022) e202100338.
												 doi: 10.1002/tcr.202100338
											
										
				J. Clausmeyer, P. Wilde, T. Löffler, et al., Electrochem. Commun. 73 (2016) 67–70.
												 doi: 10.1016/j.elecom.2016.11.003
											
										
M. AtobeG. Kreysa, K. Ota, R.F. Savinell (Eds.), Electrosynthesis under Ultrasound and Centrifugal Fields, Encyclopedia of Applied Electrochemistry (2014) 821–826.
						
						
						
	                Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xuyun Lu , Yanan Chang , Shasha Wang , Xiaoxuan Li , Jianchun Bao , Ying Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277
Mingxing Chen , Xue Li , Nian Liu , Zihe Du , Zhitao Wang , Jing Qi . A zinc-nitrate battery for efficient ammonia electrosynthesis and energy output by a high entropy hydroxide catalyst. Chinese Chemical Letters, 2025, 36(10): 111294-. doi: 10.1016/j.cclet.2025.111294
Jihong Li , Zhenying Feng , Xiaokun Sheng , Keren Chen , Jingming Ran , Luyao Li , Lei Shi , Tongzhou Wang , Yida Deng . Square-meter-scale nickel-based anode: Facile room-temperature construction for efficient industrial water electrolysis. Chinese Chemical Letters, 2025, 36(11): 111652-. doi: 10.1016/j.cclet.2025.111652
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Qingming Zeng , Yanjun Wen , Beibei Gao , Qingyan Zhang , Lulin Guo , Chao Zhang , Jiachen Wang , Qingyi Zeng . Self-driven photoelectrocatalytic systems with carbon-felt-loaded carboxylated carbon nanotube cathodes: Reduction of uranyl, oxidation of organics, and power generation. Chinese Chemical Letters, 2025, 36(9): 110673-. doi: 10.1016/j.cclet.2024.110673
Shuai Chen , Anzai Shi , Guoqing Yang , Pengfei Xie , Feng Liu , Youai Qiu . Electrochemical demethoxyl-cyanation of methoxyarenes via SNAr. Chinese Chemical Letters, 2025, 36(9): 110810-. doi: 10.1016/j.cclet.2024.110810
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Qi Zhang , Bin Han , Yucheng Jin , Mingrun Li , Enhui Zhang , Jianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176