Citation: Sadia Rani, Najoua Sbei, Seyfeddine Rahali, Samina Aslam, Tomas Hardwick, Nisar Ahmed. Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions[J]. Chinese Chemical Letters, ;2025, 36(11): 111216. doi: 10.1016/j.cclet.2025.111216 shu

Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions

    * Corresponding author.
    E-mail addresses: AhmedN14@cardiff.ac.uk, nisarhej@gmail.com (N. Ahmed).
  • Received Date: 26 November 2024
    Revised Date: 7 April 2025
    Accepted Date: 15 April 2025
    Available Online: 16 April 2025

Figures(55)

  • Electrochemical synthesis is a safe, mild and environmentally friendly alternative to chemical oxidants and reductants. It uses electricity to catalyze redox reactions. However, understanding the tools and techniques involved is crucial for maximizing its benefits in academic and industrial applications. Still, for a novice, electrosynthesis can be a somewhat intimidating. Therefore, we provide guidance to synthetic chemists by highlighting key concepts and offering practical tips. In this review article, we focus on the utilization of electro-auxiliaries, indirect electrosynthesis, alternating electrode electrolysis (AEE), microreactors for electrochemical processes, and paired electrochemical reactions. These strategies are illustrated with selected examples. The use of electrodes and electroanalytical methods such as cyclic voltammetry are discussed. It highlights the advantages of merging electrochemistry and photochemistry, and the challenges of specific organic solvents and electrolytes. The incorporation of electrochemistry into a continuous chemical flow system further advances green activation technologies in terms of efficiency, applicability, sustainability, and selectivity to deliver more efficient and cleaner synthetic processes. Furthermore, this manuscript also emphasizes improvements in current approaches and future directions for large-scale electrosynthesis.
  • 加载中
    1. [1]

      M. Faraday, Annalen der Physik 109 (1834) 149–189.  doi: 10.1002/andp.18341090803

    2. [2]

      W.M. Sudduth, Ambix 27 (1980) 26–35.  doi: 10.1179/amb.1980.27.1.26

    3. [3]

      J.O.M. Bockris, A.K. Reddy, Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science, Springer Science & Business Media, 1998.

    4. [4]

      M. Yan, Y. Kawamata, P.S. Baran, Chem. Rev. 117 (2017) 13230–13319.  doi: 10.1021/acs.chemrev.7b00397

    5. [5]

      A. Wiebe, T. Gieshoff, S. Möhle, et al., Angew. Chem. Int. Ed. 57 (2018) 5594–5619.  doi: 10.1002/anie.201711060

    6. [6]

      H. Lund, J. Electrochem. Soc. 149 (2002) S21.  doi: 10.1149/1.1462037

    7. [7]

      L.F. Novaes, J. Liu, Y. Shen, et al., Chem. Soc. Rev. 50 (2021) 7941–8002.  doi: 10.1039/d1cs00223f

    8. [8]

      H.J. Schäfer, Comptes Rendus Chim. 14 (2011) 745–765.  doi: 10.1016/j.crci.2011.01.002

    9. [9]

      E.J. Horn, B.R. Rosen, P.S. Baran, ACS Cent. Sci. 2 (2016) 302–308.  doi: 10.1021/acscentsci.6b00091

    10. [10]

      S. Rani, S. Aslam, K. Lal, et al., Chem. Rec. 24 (2024) e202300331.  doi: 10.1002/tcr.202300331

    11. [11]

      C. Schotten, T.P. Nicholls, R.A. Bourne, et al., Green Chem. 22 (2020) 3358–3375.  doi: 10.1039/d0gc01247e

    12. [12]

      M.C. Leech, K. Lam, Nat. Rev. Chem. 6 (2022) 275–286.  doi: 10.1038/s41570-022-00372-y

    13. [13]

      G. Hilt, ChemElectroChem 7 (2020) 395–405.  doi: 10.1002/celc.201901799

    14. [14]

      C. Kingston, M.D. Palkowitz, Y. Takahira, et al., Acc. Chem. Res. 53 (2019) 72–83.

    15. [15]

      Y. Kawamata, P.S. Baran, Joule 4 (2020) 701–704.  doi: 10.1016/j.joule.2020.02.002

    16. [16]

      F. Gomollón-Bel, Chem. Int. 41 (2019) 12–17.  doi: 10.1515/ci-2019-0203

    17. [17]

      L. Capaldo, L.L. Quadri, D. Ravelli, Angew. Chem. Int. Ed. 58 (2019) 17508–17510.  doi: 10.1002/anie.201910348

    18. [18]

      C.F. Carter, H. Lange, S.V. Ley, et al., Org. Process Res. Dev. 14 (2010) 393–404.  doi: 10.1021/op900305v

    19. [19]

      D.S. Cardoso, B. Sljukic, D.M. Santos, C.A. Sequeira, Org. Process Res. Dev. 21 (2017) 1213–1226.  doi: 10.1021/acs.oprd.7b00004

    20. [20]

      Y. Yuan, A. Lei, Nat. Commun. 11 (2020) 802.  doi: 10.1038/s41467-020-14322-z

    21. [21]

      S. Lips, S.R. Waldvogel, ChemElectroChem 6 (2019) 1649–1660.  doi: 10.1002/celc.201801620

    22. [22]

      S. Möhle, M. Zirbes, E. Rodrigo, et al., Angew. Chem. Int. Ed. 57 (2018) 6018–6041.  doi: 10.1002/anie.201712732

    23. [23]

      M. Yan, Y. Kawamata, P.S. Baran, Angew. Chem. Int. Ed. 57 (2018) 4149–4155.  doi: 10.1002/anie.201707584

    24. [24]

      D. Pollok, S.R. Waldvogel, Chem. Sci. 11 (2020) 12386–12400.  doi: 10.1039/d0sc01848a

    25. [25]

      B. Huang, Z. Sun, G. Sun, eScience 2 (2022) 243–277.  doi: 10.1016/j.esci.2022.04.006

    26. [26]

      R. Holze, Organic electrochemistry, Series: Encyclopedia of Electrochemistry, Wiley Online Library, 2005, pp. 2832–2833.

    27. [27]

      H.R. Stephen, C. Schotten, T.P. Nicholls, et al., Org. Process Res. Dev. 24 (2020) 1084–1089.  doi: 10.1021/acs.oprd.0c00091

    28. [28]

      S. Maljuric, W. Jud, C.O. Kappe, D. Cantillo, J. Flow Chem. 10 (2020) 181–190.  doi: 10.1007/s41981-019-00050-z

    29. [29]

      Y. Takahira, M. Chen, Y. Kawamata, et al., Synlett 30 (2019) 1178–1182.  doi: 10.1055/s-0037-1611737

    30. [30]

      J. Jörissen, Practical Aspects of Preparative Scale Electrolysis, in: Encyclopedia of Electrochemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Wiley Online Libaray, 2007.

    31. [31]

      T. Fuchigami, M. Atobe, S. Inagi, Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices, John Wiley & Sons, 2014.

    32. [32]

      A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, 2022.

    33. [33]

      D. Wang, T. Jiang, H. Wan, et al., Angew. Chem. Int. Ed. 61 (2022) e202201543.  doi: 10.1002/anie.202201543

    34. [34]

      Y. Yuan, J.C. Qi, D.X. Wang, et al., CCS Chem. 4 (2022) 2674–2685.  doi: 10.31635/ccschem.021.202101350

    35. [35]

      E.O. Bortnikov, B.S. Smith, D.M. Volochnyuk, S.N. Semenov, Chem. Eur. J. 29 (2023) e202203825.  doi: 10.1002/chem.202203825

    36. [36]

      J. Fährmann, G. Hilt, Angew. Chem. Int. Ed. 60 (2021) 20313–20317.  doi: 10.1002/anie.202107148

    37. [37]

      Y. Hioki, M. Costantini, J. Griffin, et al., Science 380 (2023) 81–87.  doi: 10.1126/science.adf4762

    38. [38]

      Y. Kawamata, P.S. Baran, J. Synth. Org. Chem. Japan 81 (2023) 1020–1027.  doi: 10.5059/yukigoseikyokaishi.81.1020

    39. [39]

      A.F. Garrido-Castro, Y. Hioki, Y. Kusumoto, et al., Angew. Chem. Int. Ed. 62 (2023) e202309157.  doi: 10.1002/anie.202309157

    40. [40]

      Y. Kawamata, K. Hayashi, E. Carlson, et al., J. Am. Chem. Soc. 143 (2021) 16580–16588.  doi: 10.1021/jacs.1c06572

    41. [41]

      D.E. Blanco, B. Lee, M.A. Modestino, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 17683–17689.  doi: 10.1073/pnas.1909985116

    42. [42]

      S. Bera, S. Sen, D. Maiti, J. Am. Chem. Soc. 146 (2024) 25166–25175.  doi: 10.1021/jacs.4c08826

    43. [43]

      S.R. Waldvogel, S. Lips, M. Selt, B. Riehl, C.J. Kampf, Chem. Rev. 118 (2018) 6706–6765.  doi: 10.1021/acs.chemrev.8b00233

    44. [44]

      C.F. Blanford, R.S. Heath, F.A. Armstrong, Chem. Commun. (2007) 1710–1712.  doi: 10.1039/b703114a

    45. [45]

      M.K. Debe, Nature 486 (2012) 43–51.  doi: 10.1038/nature11115

    46. [46]

      S.J. Yoo, L.J. Li, C.C. Zeng, R.D. Little, Angew. Chem. 127 (2015) 3815–3818.  doi: 10.1002/ange.201410207

    47. [47]

      R. Francke, R.D. Little, Chem. Soc. Rev. 43 (2014) 2492–2521.  doi: 10.1039/c3cs60464k

    48. [48]

      N. Sauermann, T.H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 8 (2018) 7086–7103.  doi: 10.1021/acscatal.8b01682

    49. [49]

      S. Herold, S. Möhle, M. Zirbes, et al., Electrochemical Amination of Less-Activated Alkylated Arenes Using Boron-Doped Diamond Anodes, Wiley Online Library, 2016.

    50. [50]

      V. Colic, A.S. Bandarenka, ACS Catal. 6 (2016) 5378–5385.  doi: 10.1021/acscatal.6b00997

    51. [51]

      A. Dribinskii, M. Tarasevich, V. Kazarinov, Mater. Chem. Phys. 22 (1989) 377–400.  doi: 10.1016/0254-0584(89)90006-0

    52. [52]

      M. Okajima, S. Suga, K. Itami, J.I. Yoshida, J. Am. Chem. Soc. 127 (2005) 6930–6931.  doi: 10.1021/ja050414y

    53. [53]

      H. Tomiyasu, H. Shikata, K. Takao, et al., Sci. Rep. 7 (2017) 45048.  doi: 10.1038/srep45048

    54. [54]

      M. Chhetri, S. Sultan, C. Rao, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 8986–8990.  doi: 10.1073/pnas.1710443114

    55. [55]

      M. Wickramasinghe, I.Z. Kiss, J. Electrochem. Soc. 163 (2016) H1171.  doi: 10.1149/2.0471614jes

    56. [56]

      M.A. Rahim, R.A. Hameed, M. Khalil, J. Power Sources 134 (2004) 160–169.  doi: 10.1016/j.jpowsour.2004.02.034

    57. [57]

      S. Bull, A. Matthews, Diam. Relat. Mater. 1 (1992) 1049–1064.  doi: 10.1016/0925-9635(92)90075-Y

    58. [58]

      N.R. Stradiotto, K.E. Toghill, L. Xiao, A. Moshar, R.G. Compton, Electroanal. An Int. J. Devoted to Fundam. Pract. Asp. Electroanal. 21 (2009) 2627–2633.  doi: 10.1002/elan.200900325

    59. [59]

      P. Joshi, P. Riley, K.Y. Goud, R.K. Mishra, R. Narayan, Curr. Opin. Electrochem. 32 (2022) 100920.  doi: 10.1016/j.coelec.2021.100920

    60. [60]

      T. Kashiwada, T. Watanabe, Y. Ootani, Y. Tateyama, Y. Einaga, ACS Appl. Mater. Interfaces 8 (2016) 28299–28305.  doi: 10.1021/acsami.5b11638

    61. [61]

      J. Roeser, N.F. Alting, H.P. Permentier, A.P. Bruins, R. Bischoff, Anal. Chem. 85 (2013) 6626–6632.  doi: 10.1021/ac303795c

    62. [62]

      S. Anantharaj, S. Chatterjee, K.C. Swaathini, et al., ACS Sustain. Chem. Eng. 6 (2018) 2498–2509.  doi: 10.1021/acssuschemeng.7b03964

    63. [63]

      E. Oberrauch, L. Eberson, J. Appl. Electrochem. 16 (1986) 575–582.  doi: 10.1007/BF01006852

    64. [64]

      S. Anantharaj, M. Venkatesh, A.S. Salunke, et al., ACS Sustain. Chem. Eng. 5 (2017) 10072–10083.  doi: 10.1021/acssuschemeng.7b02090

    65. [65]

      G. Laudadio, E. Barmpoutsis, C. Schotten, et al., J. Am. Chem. Soc. 141 (2019) 5664–5668.  doi: 10.1021/jacs.9b02266

    66. [66]

      P. Sartori, N. Ignat’ev, J. Fluor. Chem. 87 (1998) 157–162.  doi: 10.1016/S0022-1139(97)00139-5

    67. [67]

      P.E. Karthik, I. Alessandri, A. Sengeni, J. Electrochem. Soc. 167 (2020) 125503.  doi: 10.1149/1945-7111/abb0f2

    68. [68]

      C. Rousseau, F. Baraud, L. Leleyter, O. Gil, J. Hazard. Mater. 167 (2009) 953–958.  doi: 10.1016/j.jhazmat.2009.01.083

    69. [69]

      J. Chaussard, J.C. Folest, J.Y. Nedelec, et al., Synthesis (1990) 369–381 1990.

    70. [70]

      K. Izutsu, Electrochemistry in Nonaqueous Solutions, John Wiley & Sons, 2009.

    71. [71]

      V.V. Pavlishchuk, A.W. Addison, Inorg. Chim. Acta 298 (2000) 97–102.  doi: 10.1016/S0020-1693(99)00407-7

    72. [72]

      D. Prat, J. Hayler, A. Wells, Green Chem. 16 (2014) 4546–4551.  doi: 10.1039/C4GC01149J

    73. [73]

      M. Kathiresan, D. Velayutham, Chem. Commun. 51 (2015) 17499–17516.  doi: 10.1039/C5CC06961K

    74. [74]

      D. Pletcher, R.A. Green, R.C. Brown, Chem. Rev. 118 (2017) 4573–4591.

    75. [75]

      N. Elgrishi, K.J. Rountree, B.D. McCarthy, et al., J. Chem. Educ. 95 (2018) 197–206.  doi: 10.1021/acs.jchemed.7b00361

    76. [76]

      R.E. White, Electrochemical Cell Design, Springer Science & Business Media, 2012.

    77. [77]

      C. Ma, P. Fang, D. Liu, et al., Chem. Sci. 12 (2021) 12866–12873.  doi: 10.1039/d1sc04011a

    78. [78]

      H. Senboku, M. Hayama, H. Matsuno, Beilstein J. Org. Chem. 18 (2022) 1040–1046.  doi: 10.3762/bjoc.18.105

    79. [79]

      M.C. Leech, A.D. Garcia, A. Petti, A.P. Dobbs, K. Lam, React. Chem. Eng. 5 (2020) 977–990.  doi: 10.1039/d0re00064g

    80. [80]

      H. Salehzadeh, D. Nematollahi, H. Hesari, Green Chem. 15 (2013) 2441–2446.  doi: 10.1039/c3gc40954f

    81. [81]

      H. Lund, M.M. Baizer, Organic Electrochemistry: an Introduction and a Guide, 3rd ed., New York, 1983.

    82. [82]

      A. Wiebe, B. Riehl, S. Lips, R. Franke, S.R. Waldvogel, Sci. Adv. 3 (2017) eaao3920.  doi: 10.1126/sciadv.aao3920

    83. [83]

      B.H. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Nat. Commun. 10 (2019) 5599.  doi: 10.1038/s41467-019-13415-8

    84. [84]

      S. Arndt, D. Weis, K. Donsbach, S.R. Waldvogel, Angew. Chem. Int. Ed. 59 (2020) 8036–8041.  doi: 10.1002/anie.202002717

    85. [85]

      S.H. Park, M. Ju, A.J. Ressler, et al., Aldrichimica Acta 54 (2021) 17–27.

    86. [86]

      C. Gütz, M. Bänziger, C. Bucher, T.R. Galvão, S.R. Waldvogel, Org. Process Res. Dev. 19 (2015) 1428–1433.  doi: 10.1021/acs.oprd.5b00272

    87. [87]

      C.M. Cirtiu, A. Brisach-Wittmeyer, H. Ménard, J. Catal. 245 (2007) 191–197.  doi: 10.1016/j.jcat.2006.10.010

    88. [88]

      A. Sáez, V. García-García, J. Solla-Gullón, A. Aldaz, V. Montiel, Electrochim. Acta 91 (2013) 69–74.  doi: 10.1016/j.electacta.2012.12.097

    89. [89]

      R. Bandichhor, A. Bhattacharya, L. Diorazio, et al., Org. Process Res. Dev. 16 (2012) 1887–1896.  doi: 10.1021/op300251d

    90. [90]

      C.M. Cirtiu, H.O. Hassani, N.A. Bouchard, P.A. Rowntree, H. Ménard, Langmuir 22 (2006) 6414–6421.  doi: 10.1021/la0519002

    91. [91]

      G. St-Pierre, A. Chagnes, N.A. Bouchard, et al., Langmuir 20 (2004) 6365– 6373.  doi: 10.1021/la048977v

    92. [92]

      F. Marken, A.J. Cresswell, S.D. Bull, Chem. Rec. 21 (2021) 2585–2600.  doi: 10.1002/tcr.202100047

    93. [93]

      S. Li, X. Sun, Z. Yao, et al., Adv. Funct. Mater. 29 (2019) 1904780.  doi: 10.1002/adfm.201904780

    94. [94]

      M.M. Baizer, R. Hallcher, J. Electrochem. Soc. 123 (1976) 809.  doi: 10.1149/1.2132937

    95. [95]

      C.A. Paddon, M. Atobe, T. Fuchigami, et al., J. Appl. Electrochem. 36 (2006) 617–634.  doi: 10.1007/s10800-006-9122-2

    96. [96]

      Y.Y. Jiang, G.Y. Dou, L.S. Zhang, Adv. Synth. Catal. 361 (2019) 5170–5175.  doi: 10.1002/adsc.201901011

    97. [97]

      R. Matthessen, J. Fransaer, K. Binnemans, D.E. De Vos, Beilstein J. Org. Chem. 10 (2014) 2484–2500.  doi: 10.3762/bjoc.10.260

    98. [98]

      H. Putter, H. Hannebaum, Preparation of Phthalides, United States Patent, 2000 US6063256A.

    99. [99]

      X.H. Chadderdon, D.J. Chadderdon, T. Pfennig, B.H. Shanks, W. Li, Green Chem. 21 (2019) 6210–6219.  doi: 10.1039/c9gc02264c

    100. [100]

      Y. Ma, X. Yao, L. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 16548–16552.  doi: 10.1002/anie.201909642

    101. [101]

      Y. Liu, L. Xue, B. Shi, et al., Chem. Commun. 55 (2019) 14922–14925.  doi: 10.1039/c9cc08528a

    102. [102]

      W. Li, T. Nonaka, J. Electrochem. Soc. 146 (1999) 592.  doi: 10.1149/1.1391649

    103. [103]

      J. Strehl, M.L. Abraham, G. Hilt, Angew. Chem. Int. Ed. 60 (2021) 9996–10000.  doi: 10.1002/anie.202016413

    104. [104]

      W. Zhang, N. Hong, L. Song, N. Fu, Reaching the Full Potential of Electroorganic Synthesis By Paired Electrolysis, Wiley Online Library, 2021.

    105. [105]

      K.D. Moeller, Chem. Rev. 118 (2018) 4817–4833.  doi: 10.1021/acs.chemrev.7b00656

    106. [106]

      C. Costentin, J.M. Savéant, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 11147–11152.  doi: 10.1073/pnas.1904439116

    107. [107]

      M.N. Jackson, Y. Surendranath, Acc. Chem. Res. 52 (2019) 3432–3441.  doi: 10.1021/acs.accounts.9b00439

    108. [108]

      J.M. Savéant, Chem. Rev. 108 (2008) 2348–2378.  doi: 10.1021/cr068079z

    109. [109]

      A. Yazdani, G.G. Botte, Curr. Opin. Chem. Eng. 29 (2020) 89–95.  doi: 10.1016/j.coche.2020.07.003

    110. [110]

      D. Xu, K. Li, B. Jia, et al., Carbon Energy 5 (2023) e230.  doi: 10.1002/cey2.230

    111. [111]

      R. Francke, R.D. Little, J. Am. Chem. Soc. 136 (2014) 427–435.  doi: 10.1021/ja410865z

    112. [112]

      S. Dapperheld, E. Steckhan, K.H.G. Brinkhaus, T. Esch, Chem. Berichte 124 (1991) 2557–2567.  doi: 10.1002/cber.19911241127

    113. [113]

      M. Uchimiya, A.T. Stone, Chemosphere 77 (2009) 451–458.  doi: 10.1016/j.chemosphere.2009.07.025

    114. [114]

      R. Francke, R.D. Little, ChemElectroChem 6 (2019) 4373–4382.  doi: 10.1002/celc.201900432

    115. [115]

      T. Broese, R. Francke, Org. Lett. 18 (2016) 5896–5899.  doi: 10.1021/acs.orglett.6b02979

    116. [116]

      X.Y. Qian, S.Q. Li, J. Song, H.C. Xu, ACS Catal. 7 (2017) 2730–2734.  doi: 10.1021/acscatal.7b00426

    117. [117]

      Z.J. Wu, H.C. Xu, Angew. Chem. 129 (2017) 4812–4816.  doi: 10.1002/ange.201701329

    118. [118]

      Z.X. Wu, G.W. Hu, Y.X. Luan, ACS Catal. 12 (2022) 11716–11733.  doi: 10.1021/acscatal.2c03261

    119. [119]

      F. Bai, N. Wang, Y. Bai, et al., J. Org. Chem. 88 (2023) 2985–2998.  doi: 10.1021/acs.joc.2c02700

    120. [120]

      Y. Hussain, D. Sharma, N. Kotwal, I. Kumar, P. Chauhan, ChemSusChem 15 (2022) e202200415.  doi: 10.1002/cssc.202200415

    121. [121]

      A. Murtaza, Z. Ulhaq, B. Shirinfar, et al., Chem. Rec. 23 (2023) e202300119.  doi: 10.1002/tcr.202300119

    122. [122]

      Y. Lai, A. Halder, J. Kim, T.J. Hicks, P.J. Milner, Angew. Chem. 135 (2023) e202310246.  doi: 10.1002/ange.202310246

    123. [123]

      A.A. Folgueiras-Amador, A.E. Teuten, M. Salam-Perez, et al., Angew. Chem. Int. Ed. 61 (2022) e202203694.  doi: 10.1002/anie.202203694

    124. [124]

      Y. Wang, Z. Zhao, D. Pan, et al., Angew. Chem. Int. Ed. 61 (2022) e202210201.  doi: 10.1002/anie.202210201

    125. [125]

      K. Yang, T. Feng, Y. Qiu, Angew. Chem. Int. Ed. 62 (2023) e202312803.  doi: 10.1002/anie.202312803

    126. [126]

      G.M. Martins, N. Sbei, G.C. Zimmer, N. Ahmed, C–H activation/functionalization via metalla-electrocatalysis, in: L. Khotseng (Ed.), Electrocatalysis and Electrocatalysts for a Cleaner Environment-Fundamentals and Applications, IntechOpen, 2021, pp. 103–124.

    127. [127]

      L. Ackermann, Acc. Chem. Res. 53 (2019) 84–104.

    128. [128]

      C.A. Malapit, M.B. Prater, J.R. Cabrera-Pardo, et al., Chem. Rev. 122 (2021) 3180–3218.

    129. [129]

      S. Zhang, M. Findlater, ACS Catal. 13 (2023) 8731–8751.  doi: 10.1021/acscatal.3c01221

    130. [130]

      S. Changmai, S. Sultana, A.K. Saikia, ChemistrySelect 8 (2023) e202203530.  doi: 10.1002/slct.202203530

    131. [131]

      T. Kerackian, D. Bouyssi, G. Pilet, et al., ACS Catal. 12 (2022) 12315–12325.  doi: 10.1021/acscatal.2c03268

    132. [132]

      J. Fu, W. Lundy, R. Chowdhury, et al., ACS Catal. 13 (2023) 9336–9345.  doi: 10.1021/acscatal.3c01939

    133. [133]

      F. Lian, K. Xu, W. Meng, et al., Chem. Commun. 55 (2019) 14685–14688.  doi: 10.1039/c9cc07840a

    134. [134]

      T. Koyanagi, A. Herath, A. Chong, et al., J. Loren, Org. Lett. 21 (2019) 816–820.  doi: 10.1021/acs.orglett.8b04090

    135. [135]

      H. Li, C.P. Breen, H. Seo, et al., Org. Lett. 20 (2018) 1338–1341.  doi: 10.1021/acs.orglett.8b00070

    136. [136]

      S. Manabe, C.M. Wong, C.S. Sevov, J. Am. Chem. Soc. 142 (2020) 3024–3031.  doi: 10.1021/jacs.9b12112

    137. [137]

      D. Pletcher, F.C. Walsh, Industrial Electrochemistry, Springer Science & Business Media, 2012.

    138. [138]

      M.J. Orella, Y. Román-Leshkov, F.R. Brushett, Curr. Opin. Chem. Eng. 20 (2018) 159–167.  doi: 10.1016/j.coche.2018.05.002

    139. [139]

      C. Gütz, A. Stenglein, S.R. Waldvogel, Org. Process Res. Dev. 21 (2017) 771–778.  doi: 10.1021/acs.oprd.7b00123

    140. [140]

      A.A. Folgueiras-Amador, T. Wirth, J. Flow Chem. 7 (2017) 94–95.  doi: 10.1556/1846.2017.00020

    141. [141]

      M. Elsherbini, T. Wirth, Acc. Chem. Res. 52 (2019) 3287–3296.  doi: 10.1021/acs.accounts.9b00497

    142. [142]

      B. Gleede, M. Selt, C. Gütz, A. Stenglein, S.R. Waldvogel, Org. Process Res. Dev. 24 (2019) 1916–1926.

    143. [143]

      A.R. Bogdan, A.W. Dombrowski, J. Med. Chem. 62 (2019) 6422–6468.  doi: 10.1021/acs.jmedchem.8b01760

    144. [144]

      M. Atobe, H. Tateno, Y. Matsumura, Chem. Rev. 118 (2017) 4541–4572.

    145. [145]

      T. Glasnov, Continuous-flow Chemistry in the Research Laboratory, Springer, 2016.

    146. [146]

      M.B. Plutschack, B.u. Pieber, K. Gilmore, P.H. Seeberger, Chem. Rev. 117 (2017) 11796–11893.  doi: 10.1021/acs.chemrev.7b00183

    147. [147]

      N. Tanbouza, T. Ollevier, K. Lam, iScience 23 (2020) 101720.  doi: 10.1016/j.isci.2020.101720

    148. [148]

      T. Noël, Y. Cao, G. Laudadio, Acc. Chem. Res. 52 (2019) 2858–2869.  doi: 10.1021/acs.accounts.9b00412

    149. [149]

      T.H. Rehm, Chem. Eur. J. 26 (2020) 16952–16974.  doi: 10.1002/chem.202000381

    150. [150]

      J. Hartwig, J.B. Metternich, N. Nikbin, A. Kirschning, S.V. Ley, Org. Biomol. Chem. 12 (2014) 3611–3615.  doi: 10.1039/C4OB00662C

    151. [151]

      M. Elsherbini, B. Winterson, H. Alharbi, et al., Angew. Chem. Int. Ed. 58 (2019) 9811–9815.  doi: 10.1002/anie.201904379

    152. [152]

      K.J. Frankowski, R. Liu, G.L. Milligan, K.D. Moeller, J. Aubé, Angew. Chem. Int. Ed. 54 (2015) 10555–10558.  doi: 10.1002/anie.201504775

    153. [153]

      T. Gieshoff, V. Trieu, J. Heijl, S.R. Waldvogel, Beilstein J. Org. Chem. 14 (2018) 1578–1582.  doi: 10.3762/bjoc.14.135

    154. [154]

      A. Shatskiy, H. Lundberg, M.D. Kärkäs, ChemElectroChem 6 (2019) 4067–4092.  doi: 10.1002/celc.201900435

    155. [155]

      D.R. Abernethy, A.J. DeStefano, T.L. Cecil, et al., Pharm. Res. 27 (2010) 750–755.  doi: 10.1007/s11095-010-0080-3

    156. [156]

      B.R. Rosen, E.W. Werner, A.G. O’Brien, P.S. Baran, J. Am. Chem. Soc. 136 (2014) 5571–5574.  doi: 10.1021/ja5013323

    157. [157]

      A. Lipp, M. Selt, D. Ferenc, et al., Org. Lett. 21 (2019) 1828–1831.  doi: 10.1021/acs.orglett.9b00419

    158. [158]

      A. Lipp, D. Ferenc, C. Gütz, et al., Angew. Chem. Int. Ed. 57 (2018) 11055–11059.  doi: 10.1002/anie.201803887

    159. [159]

      J.I. Yosida, Encyclopedia of Applied Electrochemistry, Springer Nature, 2014, pp. 386–392.

    160. [160]

      Q. Lin, L. Li, S. Luo, Chem. Eur. J. 25 (2019) 10033–10044.  doi: 10.1002/chem.201901284

    161. [161]

      X. Chang, Q. Zhang, C. Guo, Angew. Chem. 132 (2020) 12712–12722.  doi: 10.1002/ange.202000016

    162. [162]

      M. Ghosh, V.S. Shinde, M. Rueping, Beilstein J. Org. Chem. 15 (2019) 2710–2746.  doi: 10.3762/bjoc.15.264

    163. [163]

      S. Assavapanumat, M. Ketkaew, A. Kuhn, C. Wattanakit, J. Am. Chem. Soc. 141 (2019) 18870–18876.  doi: 10.1021/jacs.9b10507

    164. [164]

      P. Xiong, M. Hemming, S.I. Ivlev, E. Meggers, J. Am. Chem. Soc. 144 (2022) 6964–6971.  doi: 10.1021/jacs.2c01686

    165. [165]

      T. Osa, Y. Kashiwagi, T. Ono, F. Kurashima, U. Akiba, Int. J. Soc. Mater. Eng. Resour. 20 (2014) 49–53.  doi: 10.5188/ijsmer.20.49

    166. [166]

      C. Wattanakit, A. Kuhn, Chem. Eur. J. 26 (2020) 2993–3003.  doi: 10.1002/chem.201904835

    167. [167]

      M. Kuroboshi, H. Yoshihisa, M.N. Cortona, et al., Tetrahedron Lett. 41 (2000) 8131–8135.  doi: 10.1016/S0040-4039(00)01419-2

    168. [168]

      W.C. Gao, Z.Y. Xiong, S. Pirhaghani, T. Wirth, Synthesis 51 (2019) 276– 284.  doi: 10.1055/s-0037-1610373

    169. [169]

      Q. Zhang, X. Chang, L. Peng, C. Guo, Angew. Chem. Int. Ed. 58 (2019) 6999–7003.  doi: 10.1002/anie.201901801

    170. [170]

      H. Lin, Y. Tang, S. Dong, R. Lang, H. Chen, Catal. Sci. Technol. 10 (2020) 2145–2151.  doi: 10.1039/d0cy00081g

    171. [171]

      P. Zhao, Y. Yin, Chin. J. Org. Chem. 23 (2003) 628–635.

    172. [172]

      K. Yamamoto, M. Kuriyama, O. Onomura, Acc. Chem. Res. 53 (2019) 105–120.  doi: 10.15261/serdj.26.105

    173. [173]

      T. Shono, H. Hamaguchi, Y. Matsumura, J. Am. Chem. Soc. 97 (1975) 4264–4268.  doi: 10.1021/ja00848a020

    174. [174]

      J.I. Yoshida, S. Isoe, Tetrahedron Lett. 28 (1987) 6621–6624.  doi: 10.1016/S0040-4039(00)96929-6

    175. [175]

      H. Sun, K.D. Moeller, Org. Lett. 4 (2002) 1547–1550.  doi: 10.1021/ol025776e

    176. [176]

      D. Karipal Padinjare Veedu, L.A. Connal, L.R. Malins, Org. Lett. 25 (2023) 3633–3638.  doi: 10.1021/acs.orglett.3c00988

    177. [177]

      A. Ray, A Handbook of Elementary Electrochemistry, LAP LAMBERT Academic Publishing, 2017.

    178. [178]

      K. Lam, W.E. Geiger, J. Org. Chem. 78 (2013) 8020–8027.  doi: 10.1021/jo401263z

    179. [179]

      C.R. McElroy, A. Constantinou, L.C. Jones, L. Summerton, J.H. Clark, Green Chem. 17 (2015) 3111–3121.  doi: 10.1039/C5GC00340G

    180. [180]

      J. Conti, P. Holtberg, J. Diefenderfer, et al., International Energy Outlook 2016 With Projections to 2040, 2016.

    181. [181]

      C. Sequeira, D. Santos, J. Braz. Chem. Soc. 20 (2009) 387–406.  doi: 10.1590/S0103-50532009000300002

    182. [182]

      G.G. Botte, Electrochem. Soc. Interface 23 (2014) 49–55.  doi: 10.1149/2.F04143if

    183. [183]

      D. Pletcher, F.C. Walsh, Electrochemical engineering, in: Industrial Electrochemistry, Springer, Dordrecht, 1993, pp. 60–172.

    184. [184]

      D. Danly, J. Electrochem. Soc. 131 (1984) 435C.  doi: 10.1149/1.2115324

    185. [185]

      G.G. Botte, D.A. Daramola, M. Muthuvel, 9.14 Preparative electrochemistry for organic synthesis, in: Paul Knochel (Ed.), Comprehensive Organic Synthesis, 2nd Ed., Elsevier, 2014, pp. 351–389.

    186. [186]

      H. Lund, O. Hammerich, Organic Electrochemistry, Fourth Edition, Marcel Dekker, New York, 2001.

    187. [187]

      H.B. Gray, Nat. Chem. 1 (2009) 7.  doi: 10.1038/nchem.141

    188. [188]

      B. O’regan, M. Grätzel, Nature 353 (1991) 737–740.  doi: 10.1038/353737a0

    189. [189]

      R.C. McAtee, E.A. Noten, C.R.J. Stephenson, Nat. Commun. 11 (2020) 1–8.  doi: 10.1038/s41467-019-13993-7

    190. [190]

      J.K. Matsui, D.N. Primer, G.A. Molander, Chem. Sci. 8 (2017) 3512–3522.  doi: 10.1039/C7SC00283A

    191. [191]

      Y. Qiu, A. Scheremetjew, L.H. Finger, L. Ackermann, Chem. Eur. J. 26 (2020) 3241–3246.  doi: 10.1002/chem.201905774

    192. [192]

      L. Qian, M. Shi, Chem. Commun. 59 (2023) 3487–3506.  doi: 10.1039/d3cc00437f

    193. [193]

      M.S. Platz, R.A. Moss, M. Jones Jr, Reviews of Reactive Intermediate Chemistry, John Wiley & Sons, 2007.

    194. [194]

      A. Albini, M. Fagnoni, Photochemically-generated Intermediates in Synthesis, John Wiley & Sons, 2013.

    195. [195]

      M.A. Ischay, T.P. Yoon, Eur. J. Org. Chem. (2012) 3359–3372 2012.  doi: 10.1002/ejoc.201101071

    196. [196]

      W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, 2nd Edition, 2001, pp. 3–293.

    197. [197]

      K. Vinodgopal, S. Hotchandani, P.V. Kamat, J. Phys. Chem. 97 (1993) 9040–9044.  doi: 10.1021/j100137a033

    198. [198]

      D.H. Kim, M.A. Anderson, Environ. Sci. Technol. 28 (1994) 479–483.  doi: 10.1021/es00052a021

    199. [199]

      I.U. Haque, J.F. Rusling, Chemosphere 26 (1993) 1301–1309.  doi: 10.1016/0045-6535(93)90183-6

    200. [200]

      S. Ichikawa, R. Doi, Catal. Today 27 (1996) 271–277.  doi: 10.1016/0920-5861(95)00198-0

    201. [201]

      P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50 (2011) 2904–2939.  doi: 10.1002/anie.201001374

    202. [202]

      J. Liu, L. Lu, D. Wood, et al., Org. Chem. Front 7 (2020) 1895–1902.  doi: 10.1039/D0QO00486C

    203. [203]

      T. Hardwick, N. Ahmed, ACS Sustain Chem. Eng. 9 (2021) 4324–4340.  doi: 10.1021/acssuschemeng.0c08434

    204. [204]

      F. Wang, S.S. Stahl, Angew. Chem. Int. Ed. 58 (2019) 6385–6390.  doi: 10.1002/anie.201813960

    205. [205]

      J.I. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 108 (2008) 2265–2299.  doi: 10.1021/cr0680843

    206. [206]

      T. Pokhrel, B. BK, R. Giri, A. Adhikari, N. Ahmed, Chem. Rec. 22 (2022) e202100338.  doi: 10.1002/tcr.202100338

    207. [207]

      J. Clausmeyer, P. Wilde, T. Löffler, et al., Electrochem. Commun. 73 (2016) 67–70.  doi: 10.1016/j.elecom.2016.11.003

    208. [208]

      M. AtobeG. Kreysa, K. Ota, R.F. Savinell (Eds.), Electrosynthesis under Ultrasound and Centrifugal Fields, Encyclopedia of Applied Electrochemistry (2014) 821–826.

  • 加载中
    1. [1]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    2. [2]

      Xuyun LuYanan ChangShasha WangXiaoxuan LiJianchun BaoYing Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277

    3. [3]

      Mingxing ChenXue LiNian LiuZihe DuZhitao WangJing Qi . A zinc-nitrate battery for efficient ammonia electrosynthesis and energy output by a high entropy hydroxide catalyst. Chinese Chemical Letters, 2025, 36(10): 111294-. doi: 10.1016/j.cclet.2025.111294

    4. [4]

      Jihong LiZhenying FengXiaokun ShengKeren ChenJingming RanLuyao LiLei ShiTongzhou WangYida Deng . Square-meter-scale nickel-based anode: Facile room-temperature construction for efficient industrial water electrolysis. Chinese Chemical Letters, 2025, 36(11): 111652-. doi: 10.1016/j.cclet.2025.111652

    5. [5]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    6. [6]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    7. [7]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    8. [8]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    9. [9]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    10. [10]

      Qingming ZengYanjun WenBeibei GaoQingyan ZhangLulin GuoChao ZhangJiachen WangQingyi Zeng . Self-driven photoelectrocatalytic systems with carbon-felt-loaded carboxylated carbon nanotube cathodes: Reduction of uranyl, oxidation of organics, and power generation. Chinese Chemical Letters, 2025, 36(9): 110673-. doi: 10.1016/j.cclet.2024.110673

    11. [11]

      Shuai ChenAnzai ShiGuoqing YangPengfei XieFeng LiuYouai Qiu . Electrochemical demethoxyl-cyanation of methoxyarenes via SNAr. Chinese Chemical Letters, 2025, 36(9): 110810-. doi: 10.1016/j.cclet.2024.110810

    12. [12]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    13. [13]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    14. [14]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    15. [15]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    18. [18]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    19. [19]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    20. [20]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

Metrics
  • PDF Downloads(0)
  • Abstract views(22)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return