Citation: Jing Liu, Ming Li, Jian Zhang, Xinyu Li, Yuqing Zheng, Xu Hou. Physicochemical design of magneto-responsive confined interfaces for manipulation of nonmagnetic liquids[J]. Chinese Chemical Letters, ;2025, 36(8): 111206. doi: 10.1016/j.cclet.2025.111206 shu

Physicochemical design of magneto-responsive confined interfaces for manipulation of nonmagnetic liquids

    * Corresponding author.
    E-mail address: houx@xmu.edu.cn (X. Hou).
    1 These authors contributed equally in this work.
  • Received Date: 6 January 2025
    Revised Date: 11 April 2025
    Accepted Date: 14 April 2025
    Available Online: 28 April 2025

Figures(5)

  • Controllable liquid manipulation is of paramount scientific and technological importance in various fields, such as the chemical industry, biomedicine, and agricultural production. Magnetic actuation, characterized by rapid, contactless, and environmentally benign operation, has emerged as a promising approach for precise liquid control. However, conventional magnetic strategies typically govern droplet movement on open surfaces, facing limitations such as restricted liquid volumes, uncertain flow paths, and inevitable evaporation, thereby constraining their broader practical applications. Recently, a variety of magnetic-driven strategies have been developed to dynamically regulate liquids within enclosed spaces, especially through physicochemical mechanisms. These approaches provide efficient control over liquid behavior by leveraging magnetically induced chemical changes, structural deformations, and dragging motions, opening new opportunities for flexible and versatile fluid management. This review explores the design and mechanisms of magneto-responsive confined interfaces for the manipulation of nonmagnetic liquids, highlighting key advancements and potential applications including liquid valves, liquid mixing, liquid flow regulation, and liquid pumping. Finally, the existing challenges and future prospects in this field are presented.
  • 加载中
    1. [1]

      J.M. Lu, H.F. Wang, Q.H. Guo, et al., Nat. Commun. 15 (2024) 8826.

    2. [2]

      A.I. Leonov, A.J.S. Hammer, S. Lach, et al., Nat. Commun. 15 (2024) 1240.

    3. [3]

      B.Y. Chen, H.M. Wang, J.D. Xu, et al., Green Energy Environ. 8 (2023) 1501–1508.

    4. [4]

      J.Q. Zhang, X.J. Wang, Z.Y. Wang, et al., Nat. Commun. 12 (2021) 7136.

    5. [5]

      W.C. Zheng, R.X. Xie, X.P. Liang, Q.L. Liang, Small 18 (2022) 2105867.

    6. [6]

      C.Y. Wang, S.L. Wang, H. Pan, et al., Sci. Adv. 6 (2020) eabb4700.

    7. [7]

      Z.Q. Zhu, T.N. Chen, F.S. Huang, et al., Adv. Mater. 36 (2024) 2304840.

    8. [8]

      J. Zhang, B.Y. Chen, X.Y. Chen, X. Hou, Adv. Mater. 33 (2021) 2005664.

    9. [9]

      A. Li, H.Z. Li, Z. Li, et al., Sci. Adv. 6 (2020) eaay5808.

    10. [10]

      Y. Li, L.L. He, X.F. Zhang, N. Zhang, D.L. Tian, Adv. Mater. 29 (2017) 1703802.

    11. [11]

      R. Gulfam, Y.P. Chen, Research 2022 (2022) 9873075.

    12. [12]

      S.J. Yu, Y.N. Jiang, L.J. Yu, et al., Natl. Sci. Rev. 12 (2025) nwae423.

    13. [13]

      W.W. Lei, G.L. Hou, M.J. Liu, et al., Sci. Adv. 4 (2018) eaau8767.

    14. [14]

      L. Wu, Z.C. Dong, F.Y. Li, Y.L. Song, Langmuir 34 (2018) 639–645.  doi: 10.1021/acs.langmuir.7b03908

    15. [15]

      B.Y. Chen, M.C. Zhang, Y.Q. Hou, et al., Innovation 3 (2022) 100231.

    16. [16]

      Y.M. Zhang, Y.H. Han, X.L. Ji, et al., Nature 610 (2022) 74–80.  doi: 10.1038/s41586-022-05124-y

    17. [17]

      G.C. Zeng, Y.M. Zhang, Z.Y. Fang, et al., Ind. Chem. Mater. 2 (2024) 424–431.  doi: 10.1039/d4im00037d

    18. [18]

      Y. Fan, X.L. Huang, J.A. Ji, et al., Angew. Chem. 136 (2024) e202403919.

    19. [19]

      J. Liu, Z.Z. Sheng, M.C. Zhang, et al., Mater. Horiz. 10 (2023) 899–907.

    20. [20]

      L. Zhang, Z. Liu, L.Y. Liu, et al., ACS Appl. Mater. Interfaces 10 (2018) 44092–44101.  doi: 10.1021/acsami.8b20395

    21. [21]

      E. Al-Hetlani, M.O. Amin, Microchim. Acta 186 (2019) 55.

    22. [22]

      Y.Y. Zhang, Z.D. Huang, Z.R. Cai, et al., Sci. Adv. 7 (2021) eabi7498.

    23. [23]

      X. Li, T.A. Chen, Z.Y. Zheng, et al., Small 20 (2024) 2404952.

    24. [24]

      Z.F. Yang, D. Snyder, A. Sathyan, A. Balazs, T. Emrick, Adv. Funct. Mater. 33 (2023) 2306819.

    25. [25]

      F.Y.H. Xiong, L.Y. Zhang, L. Xu, et al., NPG Asia Mater. 14 (2022) 84.

    26. [26]

      W.Q. Hu, G.Z. Lum, M. Mastrangeli, et al., Nature 554 (2018) 81–85.  doi: 10.1038/nature25443

    27. [27]

      S.J. Yu, Y.N. Jing, Y. Fan, et al., Proc. Natl. Acad. Sci. U. S. A. 119 (2022) e2206462119.

    28. [28]

      Y. Zhou, S.L. Huang, X.L. Tian, Adv. Funct. Mater. 30 (2019) 1906507.

    29. [29]

      A.M. Gajda, M. Ulbricht, J. Mater. Chem. B 2 (2014) 1317–1326.

    30. [30]

      W.Q. Ye, W.X. Fu, X.P. Liu, C.G. Yang, Z.R. Xu, Chin. Chem. Lett. 35 (2024) 108494.

    31. [31]

      Y. Zhang, N.T. Nguyen, Lab Chip 17 (2017) 994–1008.

    32. [32]

      J. Vialetto, M. Hayakawa, N. Kavokine, et al., Angew. Chem. Int. Ed. 56 (2017) 16565–16570.  doi: 10.1002/anie.201710668

    33. [33]

      J.V.I. Timonen, M. Latikka, L. Leibler, R.H.A. Ras, O. Ikkala, Science 341 (2013) 253–257.  doi: 10.1126/science.1233775

    34. [34]

      Y.X. Zhang, S.J. Jiang, Y.L. Hu, et al., Nano Lett. 22 (2022) 2923–2933.  doi: 10.1021/acs.nanolett.2c00100

    35. [35]

      Y.C. He, K. Yin, L.X. Wang, et al., Nano Lett. 23 (2023) 4947–4955.  doi: 10.1021/acs.nanolett.3c00759

    36. [36]

      S.J. Jiang, Y.L. Hu, H. Wu, et al., Nano Lett. 20 (2020) 7519–7529.  doi: 10.1021/acs.nanolett.0c02997

    37. [37]

      K.X. Shao, S.J. Jiang, Y.L. Hu, et al., Adv. Funct. Mater. 32 (2022) 2205831.

    38. [38]

      T. Min, C.Z. Yang, M.H. Zhang, P. Hu, J.L. Shi, Small 21 (2025) 2407734.

    39. [39]

      R.J. Wang, F. Jin, Y.F. Li, et al., Adv. Funct. Mater. 33 (2023) 2305766.

    40. [40]

      Z.G. Li, Y.Z. Li, C. Chen, Y. Cheng, J. Control. Release 335 (2021) 541–556.

    41. [41]

      P. Dunne, T. Adachi, A.A. Dev, et al., Nature 581 (2020) 58–62.  doi: 10.1038/s41586-020-2254-4

    42. [42]

      S.L. Wang, R.M. Zhou, Y.Q. Hou, M. Wang, X. Hou, Chin. Chem. Lett. 33 (2022) 3650–3656.

    43. [43]

      Y.F. Shen, D.D. Jin, T.F. Li, X.X. Yang, X. Ma, ACS Nano 18 (2024) 20027–20054.  doi: 10.1021/acsnano.4c07051

    44. [44]

      S.J. Jiang, D. Wu, J.W. Li, J.R. Chu, Y.L. Hu, Droplet 3 (2024) e117.

    45. [45]

      K. Ni, Z.Z. Wang, Adv. Funct. Mater. 33 (2023) 2213350.

    46. [46]

      Z. Liu, W. Wang, R. Xie, X.J. Ju, L.Y. Chu, Chem. Soc. Rev. 45 (2016) 460–475.

    47. [47]

      A. Vu, A. Sengupta, E. Freeman, et al., Membranes (Basel) 10 (2020) 219.  doi: 10.3390/membranes10090219

    48. [48]

      A. Sengupta, A. Vu, X.H. Qian, S.R. Wickramasinghe, Membranes 11 (2021) 340.  doi: 10.3390/membranes11050340

    49. [49]

      Y.C. Tang, X. Lin, K. Ito, et al., J. Membr. Sci. 544 (2017) 406–415.

    50. [50]

      H.X. Zhang, L.L. Ge, C.G. Ding, R. Guo, J. Mol. Liq. 349 (2022) 118416.

    51. [51]

      H. Yang, Q.F. Hou, S.J. Wang, et al., Chem. Commun. 54 (2018) 10679–10682.  doi: 10.1039/c8cc04811h

    52. [52]

      S. Ghosh, C. Yang, T. Cai, Z.B. Hu, A. Neogi, J. Phys. D: Appl. Phys. 42 (2009) 135501.  doi: 10.1088/0022-3727/42/13/135501

    53. [53]

      M.J. Liu, S.T. Wang, L. Jiang, Nat. Rev. Mater. 2 (2017) 17036.

    54. [54]

      M.A. Rodríguez-Valverde, M.A. Cabrerizo-Vílchez, R. Hidalgo-Álvarez, Eur. J. Phys. 24 (2003) 159.

    55. [55]

      R.E. Rosensweig, Ferrohydrodynamics, 1st ed., Dover Publications, New York, 2014.

    56. [56]

      N. Mustakim, Y. Song, A.H.R. Ahmed, S.W. Seo, Sens. Actuator A: Phys. 373 (2024) 115401.

    57. [57]

      A. Shademani, H.B. Zhang, J.K. Jackson, M. Chiao, Adv. Funct. Mater. 27 (2017) 1604558.

    58. [58]

      H.Y. So, Y.H. Seo, A.P. Pisano, Biomicrofluidics 8 (2014) 044119.

    59. [59]

      Y.X. Sun, W. Zhang, J.N. Gu, et al., Nat. Commun. 15 (2024) 1839.

    60. [60]

      Gating Inspired Future Technology, http://en.gift-xm.com/index.html, accessed January 6, 2025.

    61. [61]

      X. Hou, Y.H. Hu, A. Grinthal, et al., Nature 519 (2015) 70–73.  doi: 10.1038/nature14253

    62. [62]

      J. Liu, X. Xu, Y. Lei, et al., Adv. Mater. 34 (2022) 2270020.

    63. [63]

      Z.Z. Sheng, M.C. Zhang, J. Liu, et al., Natl. Sci. Rev. 4 (2020) eaao6724.

    64. [64]

      K. Li, Y.N. Wang, Y.T. Xu, et al., Chin. Chem. Lett. 35 (2024) 109511.

    65. [65]

      A.X. Wang, Y.Z. Ma, D.Y. Zhao, ACS Nano 18 (2024) 22829–22854.  doi: 10.1021/acsnano.4c08708

    66. [66]

      P. Brown, A. Bushmelev, C.P. Butts, et al., Angew. Chem. Int. Ed. 51 (2012) 2414–2416.  doi: 10.1002/anie.201108010

    67. [67]

      V. Misuk, A. Mai, K. Giannopoulos, et al., Lab Chip 13 (2013) 4542–4548.  doi: 10.1039/c3lc50897h

    68. [68]

      R.N. He, S.Q. Sun, J.P. Cui, et al., Phys. Chem. Chem. Phys. 25 (2023) 25780–25788.  doi: 10.1039/d3cp03400c

    69. [69]

      S. Mendiratta, A.A.A. Ali, S.H. Hejazi, L. Gates, Langmuir 37 (2021) 1353–1364.  doi: 10.1021/acs.langmuir.0c02408

    70. [70]

      H. Zhao, R.Y. Wen, L.Y. Zhang, et al., Adv. Sci. 11 (2024) 2406325.

    71. [71]

      S.A. Naz, V.T. Huynh, E.H. Doeven, et al., J. Chromatogr. A 1695 (2023) 463931.

    72. [72]

      W.D. Wang, J.V.I. Timonen, A. Carlson, et al., Nature 559 (2018) 77–82.

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    3. [3]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    4. [4]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    5. [5]

      Guifeng WenZheyuan ZhongYue FanXuelin TianShilin Huang . Multidimensional droplet manipulation on superhydrophobic surfaces using acoustic tweezers. Chinese Chemical Letters, 2025, 36(5): 110672-. doi: 10.1016/j.cclet.2024.110672

    6. [6]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    7. [7]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    8. [8]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    9. [9]

      Yimin GuoYiting LuoShuwen HuaChuan-Fan DingYinghua Yan . Application of magnetic nanomaterials in peptidomics: A review in the past decade. Chinese Chemical Letters, 2025, 36(6): 110070-. doi: 10.1016/j.cclet.2024.110070

    10. [10]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    11. [11]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    12. [12]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    13. [13]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    14. [14]

      Jiajia ZhuangChunyu CuiChangjiang LiGang LuoJiaping TongDi Sun . Counter-ion effect to the Ising-type magnetic anisotropy and magnetic relaxation in trigonal bipyramidal Co(Ⅱ) complexes. Chinese Chemical Letters, 2025, 36(7): 110091-. doi: 10.1016/j.cclet.2024.110091

    15. [15]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    16. [16]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    17. [17]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    18. [18]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    19. [19]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    20. [20]

      Ke XuShulai LeiPanshuo WangWeiyi WangYuan FengJunsheng Feng . Unraveling the microscopic origin of out of plane magnetic anisotropy in Ⅵ3. Chinese Chemical Letters, 2025, 36(8): 110257-. doi: 10.1016/j.cclet.2024.110257

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return