Nickel-catalyzed electrochemical carboxylation of propargylic esters with CO2 to 2,3-allenoic acids
-
* Corresponding author.
E-mail address: fzhou@chem.ecnu.edu.cn (F. Zhou).
Citation:
Yuqing Zhong, Mengmeng Jiang, Deyong Yang, Nan Feng, Ying Sun, Huimin Wang, Feng Zhou. Nickel-catalyzed electrochemical carboxylation of propargylic esters with CO2 to 2,3-allenoic acids[J]. Chinese Chemical Letters,
;2025, 36(12): 111169.
doi:
10.1016/j.cclet.2025.111169
N.Krause Hoffmann-Röder, Angew. Chem. Int. Ed. 43 (2004) 1196–1216.
doi: 10.1002/anie.200300628
P. Rivera-Fuentes, F. Diederich, Angew. Chem. Int. Ed. 51 (2012) 2818–2828.
doi: 10.1002/anie.201108001
S.M. Ma, Chem. Rev. 105 (2005) 2829–2872.
doi: 10.1021/cr020024j
S.C. Yu, S.M. Ma, Angew. Chem. Int. Ed. 51 (2012) 3074–3112.
doi: 10.1002/anie.201101460
F. López, J.F. Mascareñas, Chem. Soc. Rev. 43 (2014) 2904–2915.
doi: 10.1039/C4CS00024B
L. Liu, R.M. Ward, J.M. Schomaker, Chem. Rev. 119 (2019) 12422–12490.
doi: 10.1021/acs.chemrev.9b00312
R. Zimmer, C.U. Dinesh, E. Nandanan, F.A. Khan, Chem. Rev. 100 (2000) 3067–3126.
doi: 10.1021/cr9902796
A.S.K. Hashmi, Angew. Chem. Int. Ed. 39 (2000) 3590–3593.
doi: 10.1002/1521-3773(20001016)39:20<3590::AID-ANIE3590>3.0.CO;2-L
B.J. Cowen, S.J. Miller, Chem. Soc. Rev. 38 (2009) 3102–3116.
doi: 10.1039/b816700c
S.M. Ma, Acc. Chem. Res. 42 (2009) 1679–1688.
doi: 10.1021/ar900153r
J.T. Ye, S.M. Ma, Acc. Chem. Res. 47 (2014) 989–1000.
doi: 10.1021/ar4002069
R. Hajinasiri, Tetrahedron 126 (2022) 133053.
doi: 10.1016/j.tet.2022.133053
S.C. Yu, S.M. Ma, Chem. Commun. 47 (2011) 5384–5418.
doi: 10.1039/c0cc05640e
R.K. Neff, D.E. Frantz, ACS Catal. 4 (2014) 519–528.
doi: 10.1021/cs401007m
J.T. Ye, S.M. Ma, Org. Chem. Front. 1 (2014) 1210–1224.
doi: 10.1039/C4QO00208C
L. Fu, S. Greßies, P.H. Chen, G.S. Liu, Chin. J. Chem. 38 (2020) 91–100.
doi: 10.1002/cjoc.201900277
X. Huang, S.M. Ma, Acc. Chem. Res. 52 (2019) 1301–1312.
doi: 10.1021/acs.accounts.9b00023
J. Tsuji, T. Sugiura, I. Minami, Tetrahedron Lett. 27 (1986) 731–734.
doi: 10.1016/S0040-4039(00)84086-1
J.A. Marshall, M.A. Wolf, E.M. Wallace, J. Org. Chem. 62 (1997) 367–371.
doi: 10.1021/jo9618740
Y.L. Wang, S.M. Ma, Adv. Synth. Catal. 355 (2013) 741–750.
doi: 10.1002/adsc.201200910
Y.L. Wang, W.L. Zhang, S.M. Ma, J. Am. Chem. Soc. 135 (2013) 11517–11520.
doi: 10.1021/ja406135t
Y.L. Wang, W.L. Zhang, S.M. Ma, Org. Chem. Front. 1 (2014) 807–811.
doi: 10.1039/C4QO00151F
W.L. Zhang, S.M. Ma, Chem. Eur. J. 23 (2017) 8590–8595.
doi: 10.1002/chem.201701194
W.L. Zhang, C.F. Huang, Y. Yuan, M.S. Ma, Chem. Commun. 53 (2017) 12430–12433.
doi: 10.1039/C7CC06866B
W.F. Zheng, W.L. Zhang, J.H. Huang, et al., Org. Chem. Front. 5 (2018) 1900–1904.
doi: 10.1039/c8qo00318a
W.F. Zheng, W.L. Zhang, C.F. Huang, et al., Nat. Catal. 2 (2019) 997–1005.
doi: 10.1038/s41929-019-0346-z
J. Wang, W. Zhang, P. Wu, et al., Org. Chem. Front. 7 (2020) 3907–3911.
doi: 10.1039/d0qo01106a
J. Wang, W.F. Zheng, Y. Li, et al., Org. Chem. Front. 11 (2024) 2477–2484.
doi: 10.1039/d4qo00082j
M. Aresta, Carbon Dioxide as Chemical Feedstock, Wiley VCH, Weinheim, 2010.
L.N. He, Carbon Dioxide Chemistry, Science Press, Beijing, 2013.
M.Y. He, Y. Sun, B.X. Han, Angew. Chem. Int. Ed. 52 (2013) 9620–9633.
doi: 10.1002/anie.201209384
Q. Liu, L.P. Wu, R. Jackstell, M. Beller, Nat. Commun. 6 (2015) 5933–5947.
doi: 10.1038/ncomms6933
G.Q. Yuan, C.R. Qi, W.Q. Wu, H.F. Jiang, Curr. Opin. Green Sustain. Chem. 3 (2017) 22–27.
doi: 10.1016/j.cogsc.2016.11.006
J.H. Ye, T. Ju, H. Huang, L.L. Liao, D.G. Yu, Acc. Chem. Res. 54 (2021) 2518–2531.
doi: 10.1021/acs.accounts.1c00135
L.Q. Qiu, H.R. Li, L.N. He, Acc. Chem. Res. 56 (2023) 2225–2240.
doi: 10.1021/acs.accounts.3c00316
S. Dabral, T. Schaub, Adv. Synth. Catal. 361 (2019) 223–246.
doi: 10.1002/adsc.201801215
M.D. Burkart, N. Hazar, C.L. Tway, E.L. Zeitler, ACS Catal. 9 (2019) 7937–7956.
doi: 10.1021/acscatal.9b02113
S. Gennen Grignard, C. Jérôme, A.W. Kleij, C. Detrembleur, Chem. Soc. Rev. 48 (2019) 4466–4514.
doi: 10.1039/c9cs00047j
H.W. Cheo Cai, T. Liu, J. Wu, Angew. Chem. Int. Ed. 60 (2021) 18950–18980.
doi: 10.1002/anie.202010710
R. Cauwenbergh, V. Goyal, R. Maiti, K. Natte, S. Das, Chem. Soc. Rev. 51 (2022) 9371–9423.
doi: 10.1039/d1cs00921d
C.K. Ran, H.Z. Xiao, L.L. Liao, et al., Natl. Sci. Open. 2 (2023) 20220024.
doi: 10.1360/nso/20220024
N.R. Pearson, G. Hahn, G. Zweifel, J. Org. Chem. 47 (1982) 3364–3366.
doi: 10.1021/jo00138a044
B.K.Y. Miao, G. Li, S.M. Ma, Chem. Eur. J. 21 (2015) 17224–17228.
doi: 10.1002/chem.201503494
J.H. Qin, Z.Q. Xiong, C.Z.H. Cheng, M. Hu, J.H. Li, Org. Lett. 25 (2023) 9176–9180.
doi: 10.1021/acs.orglett.3c03735
D.Y. Yang, Y. Sun, N. Feng, et al., Angew. Chem. Int. Ed. (2025) e202419702.
X.T. Gao, Z. Zhang, X. Wang, et al., Chem. Sci. 11 (2020) 10414–10420.
doi: 10.1039/d0sc04091f
Z. Zhang, Z.H. Zhang, F. Zhou, J. Zhou, Org. Lett. 23 (2021) 2726–2730.
doi: 10.1021/acs.orglett.1c00632
X.T. Gao, C.C. Gan, S.Y. Liu, et al., ACS Catal. 7 (2017) 8588–8593.
doi: 10.1021/acscatal.7b03370
F. Zhou, S.L. Xie, X.T. Gao, et al., Green Chem. 19 (2017) 3908–3915.
doi: 10.1039/C7GC01458A
X.T. Gao, S.L. Xie, F. Zhou, H.H. Wu, J. Zhou, Chem. Commun. 55 (2019) 14303–14306.
doi: 10.1039/c9cc07671a
S.L. Xie, X.Y. Cui, X.T. Gao, et al., Org. Chem. Front. 6 (2019) 3678–3682.
doi: 10.1039/c9qo00923j
S.L. Xie, X.T. Gao, F. Zhou, H.H. Wu, J. Zhou, Chin. Chem. Lett. 31 (2020) 324–332.
doi: 10.1016/j.cclet.2019.05.060
S.L. Xie, X.T. Gao, H.H. Wu, F. Zhou, J. Zhou, Org. Lett. 22 (2020) 8424–8429.
doi: 10.1021/acs.orglett.0c03051
Z.P. Zhao, H.R. Lin, Z. Zhang, et al., Org. Lett. 25 (2023) 7895–7899.
doi: 10.1021/acs.orglett.3c03140
Z. Zhang, Y. Sun, Y. Gong, et al., Nat. Chem. 16 (2024) 521–532.
doi: 10.1038/s41557-024-01479-z
Z. Zhang, Z.H. Zhang, Y. Sun, et al., Sci. China Chem. 68 (2025) 1402–1411.
doi: 10.1007/s11426-024-2346-4
Y. Cao, X. He, N. Wang, H.R. Li, L.N. He, Chin. J. Chem. 36 (2018) 644–659.
doi: 10.1002/cjoc.201700742
Z. Yu, M. Shi, Chem. Commun. 58 (2022) 13539–13555.
doi: 10.1039/d2cc05242c
Z.X. Yang, Y. Yu, L.C. Lai, et al., Green Synth. Catal. 2 (2021) 19–26.
G.Q. Sun, W. Zhang, L.L. Liao, et al., Nat. Commun. 12 (2021) 7086–7095.
doi: 10.1038/s41467-021-27437-8
S.Y. Wang, T. Feng, Y.W. Wang, Y.A. Qiu, Chem. Asian J. 17 (2022) e202200543.
doi: 10.1002/asia.202200543
X.F. Liu, K. Zhang, L. Tao, X.B. Lu, W.Z. Zhang, Green Chem. Eng. 3 (2022) 125–137.
doi: 10.3390/catal12020125
L.L. Liao, Z.H. Wang, K.G. Cao, et al., J. Am. Chem. Soc. 144 (2022) 2062–2068.
doi: 10.1021/jacs.1c12071
W. Zhang, L.L. Liao, L. Li, et al., Angew. Chem. Int. Ed. 62 (2023) e202301892.
doi: 10.1002/anie.202301892
G.Q. Sun, P. Yu, W. Zhang, et al., Nature 615 (2023) 67–72.
doi: 10.1038/s41586-022-05667-0
H. Senboku, Curr. Org. Chem. 28 (2024) 76–88.
doi: 10.2174/1385272827666230915162055
X.T. Gao, Y.Q. Zhong, N. Feng, et al., Chin. J. Org. Chem. 44 (2024) 3043–3062.
doi: 10.6023/cjoc202406045
G.Q. Sun, L. Liao, C.K. Ran, J.H. Ye, D.G. Yu, Acc. Chem. Res. 57 (2024) 2728–2745.
doi: 10.1021/acs.accounts.4c00417
C.K. Ran, Q. Qu, Y.Y. Tao, et al., Sci. China Chem. 67 (2024) 3366–3372.
doi: 10.1007/s11426-024-2075-6
L. Li, Z.X. Yan, C.K. Ran, et al., Chin. Chem. Lett. 35 (2024) 110104–110108.
doi: 10.1016/j.cclet.2024.110104
P.F. Li, Y.W. Wang, H.Y. Zhang, Y.A. Qiu, Acc. Chem. Res. 58 (2025) 113–129.
doi: 10.1021/acs.accounts.4c00652
K. Huang, C.L. Sun, Z.J. Shi, Chem. Soc. Rev. 40 (2011) 2435–2452.
doi: 10.1039/c0cs00129e
S.S. Yan, Q. Fu, L.L. Liao, et al., Coord. Chem. Rev. 374 (2018) 439–463.
doi: 10.1016/j.ccr.2018.07.011
A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 57 (2018) 15948–15982.
doi: 10.1002/anie.201803186
Y.G. Chen, X.T. Xu, K. Zhang, et al., Synthesis 50 (2018) 35–48.
doi: 10.1055/s-0036-1590908
Y. Yi, W. Hang, C. Xi, Chin. J. Org. Chem. 41 (2021) 80–93.
doi: 10.6023/cjoc202007013
A. Tortajada, M. Börjesson, R. Martin, Acc. Chem. Res. 54 (2021) 3941–3952.
doi: 10.1021/acs.accounts.1c00480
B.L. Chen, H.W. Zhu, Y. Xiao, et al., Electrochem. Commun. 42 (2014) 55–59.
doi: 10.1016/j.elecom.2014.02.009
M. Yan, Y. Kawamata, P.S. Baran, Chem. Rev. 117 (2017) 13230–13319.
doi: 10.1021/acs.chemrev.7b00397
P. Xiong, H.C. Xu, Acc. Chem. Res. 52 (2019) 3339–3350.
doi: 10.1021/acs.accounts.9b00472
J.C. Siu, N. Fu, S. Lin, Acc. Chem. Res. 53 (2020) 547–560.
doi: 10.1021/acs.accounts.9b00529
T.H. Meyer, I. Choi, C. Tian, L. Ackermann, Chem 6 (2020) 2484–2496.
doi: 10.1016/j.chempr.2020.08.025
K.J. Jiao, Y.K. Xing, Q.L. Yang, H. Qiu, T.S. Mei, Acc. Chem. Res. 53 (2020) 300–310.
doi: 10.1021/acs.accounts.9b00603
Y. Yuan, J. Yang, A. Lei, Chem. Soc. Rev. 50 (2021) 10058–10086.
doi: 10.1039/d1cs00150g
X. Cheng, A.W. Lei, T.S. Mei, et al., CCS Chem. 4 (2022) 1120–1152.
doi: 10.31635/ccschem.021.202101451
C. Ma, P. Fang, D. Liu, et al., Chem. Sci. 12 (2021) 12866–12873.
doi: 10.1039/d1sc04011a
Y.Y. Gui, S.S. Yan, W. Wang, et al., Sci. Bull. 68 (2023) 3124–3128.
doi: 10.1016/j.scib.2023.11.018
J. Rein, S.B. Zacate, K.N. Mao, S. Lin, Chem. Soc. Rev. 52 (2023) 8106–8125.
doi: 10.1039/d3cs00511a
Q.D. Hu, B.Y. Wei, M.X. Wang, et al., J. Am. Chem. Soc. 146 (2024) 14864–14874.
doi: 10.1021/jacs.4c04211
C. Nájera, I.P. Beletskaya, M. Yus, Chem. Soc. Rev. 48 (2019) 4515–4618.
doi: 10.1039/c8cs00872h
Y. Ke, W. Li, W.F. Liu, W.Q. Kong, Sci. China Chem. 66 (2023) 2951–2976.
doi: 10.1007/s11426-023-1533-y
T. Moragas, J. Cornella, R. Martin, J. Am. Chem. Soc. 136 (2014) 17702–17705.
doi: 10.1021/ja509077a
M.V. Gemmeren, M. Bçrjesson, A. Tortajada, et al., Angew. Chem. Int. Ed. 56 (2017) 6558–6562.
doi: 10.1002/anie.201702857
F.J. Hernández1, T. Moragas, J. Cornella, R. Martin, Nature 545 (2017) 84–88.
doi: 10.1038/nature22316
M. Gaydou, T. Moragas, F.J. Hernández, R. Martin, J. Am. Chem. Soc. 139 (2017) 12161–12164.
doi: 10.1021/jacs.7b07637
Q.Y. Meng, S. Wang, G.S. Huff, B. König, J. Am. Chem. Soc. 140 (2018) 3198–3201.
doi: 10.1021/jacs.7b13448
C.L. Ding, J.S. Zhong, H. Yan, K.Y. Ye, Synthesis 56 (2024) 1687–1694.
doi: 10.1055/a-2200-5332
S.Z. Tasker, E.A. Standley, T.F. Jamison, Nature 509 (2014) 299–309.
doi: 10.1038/nature13274
J. Choi, G.C. Fu, Science 356 (2017) eaaf7230.
doi: 10.1126/science.aaf7230
E.L. Lucas, E.R. Jarvo, Nat. Rev. Chem. 1 (2017) 0065–0071.
doi: 10.1038/s41570-017-0065
T.B. Hamby, M.J. LaLama, C.S. Sevov, Science 376 (2022) 410–416.
doi: 10.1126/science.abo0039
H. Huo, B.J. Gorsline, G.C. Fu, Science 367 (2020) 559–564.
doi: 10.1126/science.aaz3855
S.Q. Zhang, X. Hong, Acc. Chem. Res. 54 (2021) 2158–2171.
doi: 10.1021/acs.accounts.1c00050
C.S. Day, R.G. Ángel, J.T. Stephanie, et al., Nat. Catal. 6 (2023) 244–253.
doi: 10.1038/s41929-023-00925-4
L. Talavera, C. Odena, R. Martin, Adv. Catal. 74 (2024) 133–179.
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Pei Xu , Tian-Zi Hao , Zhi-Tao Liu , Yi-Qin Liu , Hui-Xian Jiang , Dong Guo , Xu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Zhao Gu , Yunhui Yang , Song Ye , Congyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hui Bian , Xinyi Yuan , Nan Zhang , Zhuo Xu , Juhong Lian , Ruibin Jiang , Junqing Yan , Deng Li , Shengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034
Jiayin Hu , Yafei Guo , Long Li , Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031
Xiaofan ZHANG , Yu DUAN , Meijie SHI , Nan LU , Renhong LI , Xiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937