Citation: Chongbei Wu, Benzhi Wang, Xuan Li, Jiaxuan Gu, Yihan Wu, Zhe Zhao, Pengfei Jia, Jizhou Jiang. Dual activation pathways based on OH-functionalized alk-Ti3C2 MXene/RuOx boosting the hydrogen generation[J]. Chinese Chemical Letters, ;2025, 36(8): 111162. doi: 10.1016/j.cclet.2025.111162 shu

Dual activation pathways based on OH-functionalized alk-Ti3C2 MXene/RuOx boosting the hydrogen generation

    * Corresponding author.
    E-mail address: 027wit@163.com (J. Jiang).
    1 These authors contributed equally to this work.
  • Received Date: 5 December 2024
    Revised Date: 26 March 2025
    Accepted Date: 31 March 2025
    Available Online: 31 March 2025

Figures(5)

  • A meticulous design of the local environment at the interface between active species and the support, aimed at optimizing the adsorption of H2O molecules and BH4 anion, offers an ideal strategy for enhancing hydrogen generation via NaBH4 hydrolysis through dual activation pathways. Theoretical predictions based on d-band center analysis and electron transfer calculations suggest that introducing -OH functional groups induce charge redistribution, enhancing charge concentration on alk-Ti3C2 and facilitating the adsorption and activation of dual active species, H2O molecules and BH4 anion. Inspired by these predictions, the optimized alk-Ti3C2/RuOx catalyst demonstrates the highest catalytic activity, achieving a hydrogen generation rate (HGR) of 9468 mL min−1 gcat.−1. Both experimental data and theoretical analyses confirm that the -OH functional groups promote charge enrichment on alk-Ti3C2, optimizing the adsorption of H2O molecules and BH4 anion, and reducing the dissociation energy barrier of the *OHH-TS intermediate. This dual activation pathways mechanism lowers the activation energy for NaBH4 hydrolysis, significantly enhancing the HGR performance. These findings, guided by theoretical insights, establish alk-Ti3C2/RuOx as an efficient catalyst for NaBH4 hydrolysis and provide a strong foundation for future hydrogen generation catalyst designs.
  • 加载中
    1. [1]

      X. Liu, W. Sun, J. Chen, Z. Wen, Angew. Chem. Int. Ed. 63 (2024) 202317313.

    2. [2]

      C. Wu, G. Yu, Y. Yin, et al., Small 16 (2020) 2003162.

    3. [3]

      F. Li, Y. Anjarsari, J. Wang, et al., Carbon Lett. 33 (2023) 1321–1331.  doi: 10.1007/s42823-022-00380-4

    4. [4]

      J. Guo, B. Wang, D. Yang, et al., Appl. Catal. B: Environ. Energy 265 (2020) 118584.

    5. [5]

      S.H. So, S. Ha, C.G. Min, Y.S. Lee, C.R. Park, Carbon Lett. 33 (2023) 1027–1034.  doi: 10.1007/s42823-023-00524-0

    6. [6]

      Q. Sun, N. Wang, R. Bai, et al., Adv. Sci. 6 (2019) 1802350.

    7. [7]

      Q. Sun, X. Wang, H. Wang, et al., J. Mater. Chem. A 10 (2022) 10837–10843.  doi: 10.1039/d2ta01544g

    8. [8]

      F. Fu, C. Wang, Q. Wang, et al., J. Am. Chem. Soc. 140 (2018) 10034–10042.  doi: 10.1021/jacs.8b06511

    9. [9]

      S. Guan, Y. Liu, H. Zhang, et al., Adv. Sci. 10 (2023) 2300726.

    10. [10]

      J. Huo, H. Wei, L. Fu, C. Zhao, C. He, Carbon Lett. 34 (2023) 107261.

    11. [11]

      B. Liu, A. Rose, N. Zhang, Y. Hu, M. Ma, J. Phys. Chem. C 121 (2017) 12610–12616.  doi: 10.1021/acs.jpcc.7b03094

    12. [12]

      F. Yao, S. Guan, L. Bian, et al., ACS Sustainable Chem. Eng. 9 (2021) 12332–12340.  doi: 10.1021/acssuschemeng.1c04249

    13. [13]

      S. Zhang, Z. Huang, T.T. Isimjan, D. Cai, X. Yang, Appl. Catal. B: Environ. Energy 343 (2024) 123448.

    14. [14]

      Q. Sun, N. Wang, T. Zhang, et al., Angew. Chem. Int. Ed. 131 (2019) 18743–18749.  doi: 10.1002/ange.201912367

    15. [15]

      L. Shi, K. Zhu, Y. Yang, et al., Chin. Chem. Lett. 35 (2024) 109222.

    16. [16]

      U.B. Demirci, P. Miele, C. R. Chimie 17 (2014) 707–716.

    17. [17]

      F. Yang, J. Ruan, T. Li, et al., J. Alloys Compd. 926 (2022) 166902.

    18. [18]

      H. Li, X. Hu, L. Wang, et al., Chem. Eng. J. 481 (2024) 148547.

    19. [19]

      S. Zhou, Q. Yang, Y. Liu, et al., J. Catal. 433 (2024) 115491.

    20. [20]

      W. Xu, W. Li, H. Wen, et al., Appl. Catal. B: Environ. Energy 286 (2021) 119946.

    21. [21]

      Y. Yang, L. Shi, Q. Liang, et al., Chin. J. Catal. 56 (2024) 176–187.

    22. [22]

      Y. Zou, L. Dong, S. Yan, et al., J. Catal. 429 (2024) 115241.

    23. [23]

      Y. Liu, L. Cheng, Y. Huang, et al., ChemSusChem 16 (2023) e202202113.

    24. [24]

      Z. Teng, Q. Zhang, H. Yang, et al., Nat. Catal. 4 (2021) 374–384.  doi: 10.1038/s41929-021-00605-1

    25. [25]

      H. Li, Z. Liu, L. Wang, et al., Chem. Eur. J. 29 (2023) e202203207.

    26. [26]

      Y. Liu, H. Wen, D. Zhou, et al., Appl. Catal. B: Environ. Energy 291 (2021) 120094.

    27. [27]

      J. Wang, Q. Qin, F. Li, et al., Carbon Lett. 33 (2023) 1381–1394.  doi: 10.1007/s42823-022-00401-2

    28. [28]

      J. Jiang, F. Li, S. Bai, et al., Nano Res. 16 (2023) 4656–4663.  doi: 10.1007/s12274-022-5112-x

    29. [29]

      J. Jiang, S. Bai, M. Yang, et al., Nano Res. 15 (2022) 5977–5986.  doi: 10.1007/s12274-022-4276-8

    30. [30]

      A.D. Handoko, K.D. Fredrickson, B. Anasori, et al., ACS Appl. Energy Mater. 1 (2018) 173–180.  doi: 10.1021/acsaem.7b00054

    31. [31]

      J. Ran, G. Gao, F. Li, et al., Nat. Commun. 8 (2017) 13907.

    32. [32]

      A.A. Mayyahi, S. Sarker, B.M. Everhart, X. He, P.B. Amama, Mater. Today Commun. 32 (2022) 103835.

    33. [33]

      Y. Karatas, T. Cetin, I.N. Akkus, Y. Akinay, M. Gulcan, Int. J. Energy Res. 46 (2022) 11411–11423.  doi: 10.1002/er.7938

    34. [34]

      C. Wu, Q. Han, L. Qu, APL Mater. 8 (2020) 120703.

    35. [35]

      C. Zhou, K. Ma, Z. Zhuang, et al., J. Am. Chem. Soc. 146 (2024) 21453–21465.  doi: 10.1021/jacs.4c04189

    36. [36]

      L. Wang, T. Yang, B. Feng, et al., Chin. J. Catal. 54 (2023) 265–277.

    37. [37]

      C. Hu, F. Wei, Q. Liang, et al., J. Energy Chem. 80 (2023) 247–255.

    38. [38]

      Y. Liu, Y. Chen, Y. Tian, et al., Adv. Mater. 34 (2022) 2203615.

    39. [39]

      E. Cui, Y. Lu, J. Jiang, D. Wang, T. Zhai, Chin. J. Catal. 59 (2024) 126–136.

    40. [40]

      L. Zhai, X. She, L. Zhuang, et al., Angew. Chem. Int. Ed. 61 (2022) e202116057.

    41. [41]

      X. Chen, H. Fu, X. Li, et al., Chem. Eng. J. 467 (2023) 143374.

    42. [42]

      R. Shi, X. Wang, G. Zhou, Appl. Surf. Sci. 624 (2023) 157159.

    43. [43]

      K. Xiang, Y. Wang, Z. Zhuang, et al., J. Mater. Sci. Technol. 203 (2024) 108–117.

    44. [44]

      C. Wu, X. Li, X. Liu, et al., J. Mater. Sci. Technol. 218 (2025) 305–316.

    45. [45]

      Q. Tang, Z. Sun, S. Deng, H. Wang, Z. Wu, J. Colloid Interf. Sci. 564 (2020) 406–417.

    46. [46]

      C. Wu, X. Li, H. Wang, et al., Sci. China Technol. Sci. 59 (2024) 183–190.

    47. [47]

      J. Zou, S. Wu, Y. Liu, et al., Carbon 130 (2018) 652–663.

    48. [48]

      Q. Han, C. Wu, H. Jiao, et al., Adv. Mater. 33 (2021) 2008180.

    49. [49]

      J. Guo, C. Wu, J. Zhang, et al., J. Mater. Chem. A 7 (2019) 8865–8872.  doi: 10.1039/c8ta10695a

    50. [50]

      Y. Chen, Q. Chen, G. Fan, Int. J. Hydrogen Energy 45 (2020) 28812–28820.

    51. [51]

      L. Wang, J. Huang, X. Hu, et al., J. Colloid Interf. Sci. 660 (2024) 989–996.  doi: 10.1587/transfun.2023eap1075

    52. [52]

      G. Li, Y. Tan, Z. Lei, F. Yin, X. He, Carbon Lett. 33 (2023) 899–908.  doi: 10.1007/s42823-023-00471-w

    53. [53]

      Y. Ren, H. Zhang, C. Hao, et al., Chin. Chem. Lett. 35 (2024) 108225.

    54. [54]

      S. Dou, C. Hu, L. Shi, et al., ChemCatChem 19 (2021) 1–9.

    55. [55]

      S. Dou, S. Zhou, H. Huang, et al., Chem. Eur. J. 26 (2020) 1–10.

    56. [56]

      C. Tang, G. Zhou, J. Chen, et al., Energy Fuels 37 (2023) 9444–9451.  doi: 10.1021/acs.energyfuels.3c00620

    57. [57]

      B. Long, J. Chen, Z. Zhao, et al., Energy Technol. 10 (2022) 2200439.

    58. [58]

      J. Duan, X. Liu, L. Bian, Y. Fan, B. Liu, ACS Appl. Energy Mater. 6 (2023) 1753–1762.  doi: 10.1021/acsaem.2c03636

    59. [59]

      C. Luo, F. Fu, X. Yang, et al., ChemCatChem 11 (2019) 1643–1649.  doi: 10.1002/cctc.201900051

    60. [60]

      K. Yao, C. Zhao, N. Wang, et al., Nanoscale 12 (2020) 638–647.  doi: 10.1039/c9nr07144j

    61. [61]

      Z. Li, L. An, M. Song, et al., Chin. Chem. Lett. 34 (2023) 107622.

    62. [62]

      R. Shen, Y. Liu, H. Wen, et al., Energy Environ. Mater. 6 (2023) e12292.

    63. [63]

      L. Liu, H. Zhu, Y. Zheng, ACS Appl. Energy Mater. 5 (2022) 731–739.  doi: 10.1021/acsaem.1c03171

    64. [64]

      M. Asim, S. Zhang, Y. Wang, et al., Fuel 318 (2022) 123544.

    65. [65]

      B. Mao, Y. Zhu, D. Huang, et al., Adv. Mater. Interfaces 10 (2023) 2201891.

    66. [66]

      B. Cui, G. Wu, S. Qiu, et al., Adv. Sustainable Syst. 5 (2021) 2100209.

    67. [67]

      Y. Qin, T. Yu, S. Deng, et al., Nat. Commun. 13 (2022) 3784.

    68. [68]

      L. Wang, X. Hu, H. Li, et al., Green Chem. 26 (2024) 2011–2020.  doi: 10.1039/d3gc04537d

    69. [69]

      T.T. Dang, T.K.A. Nguyen, K.C. Bhamu, et al., ACS Catal. 12 (2022) 13763–13780.  doi: 10.1021/acscatal.2c03523

    70. [70]

      B. Wang, L. Wang, J.H. Lee, et al., Carbon Energy 6 (2024) e526.

    71. [71]

      C. Wu, Z. Teng, C. Yang, F. et al., Adv. Mater. 34 (2022) e2110266.

    72. [72]

      Y. Wang, J. Ding, F. Deng, H. Liu, Carbon Lett. 34 (2023) 1593–1608.

    73. [73]

      J. Ding, D. Guo, N. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202311909.

    74. [74]

      J. Zheng, X. Peng, Z. Xu, J. Gong, Z. Wang, ACS Catal. 12 (2022) 10245–10254.  doi: 10.1021/acscatal.2c01825

    75. [75]

      X. Zhang, J. Jiang, A.A. Suleiman, et al., Adv. Funct. Mater. 29 (2019) 1906585.

    76. [76]

      W. Li, Y. Zhao, Y. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 3290–3298.

    77. [77]

      H. Luo, J. Jiang, M. Li, K. Sun, Y. Zheng, J. Colloid Interf. Sci. 654 (2024) 289–299.

    78. [78]

      E. Vallejo, Carbon Lett. 33 (2023) 823–832.

    79. [79]

      Y. Meng, Q. Sun, T. Zhang, et al., J. Am. Chem. Soc. 145 (2023) 5486–5495.  doi: 10.1021/jacs.3c00047

    80. [80]

      S. Chen, B. Gong, J. Gu, et al., Angew. Chem. 134 (2022) e202211919.

    81. [81]

      C. Wu, J. Zhang, J. Guo, et al., ACS Sustain. Chem. Eng. 66 (2018) 7451–7457.  doi: 10.1021/acssuschemeng.8b00061

    82. [82]

      S. Mehdi, Y. Liu, H. Wei, et al., Appl. Catal. B: Environ. Energy 325 (2023) 122317.

    83. [83]

      X. Huang, Y. Liu, H. Wen, et al., Appl. Catal. B: Environ. Energy 287 (2021) 119960.

    84. [84]

      S. Dou, W. Zhang, Y. Yang, et al., Int. J. Hydrogen Energy 46 (2020) 7772–7781.

    85. [85]

      S. Zhou, L. Cheng, Y. Liu, et al., Inorg. Chem. 63 (2024) 2015–2023.  doi: 10.1021/acs.inorgchem.3c03746

    86. [86]

      H. Zhang, K. Zhang, S. Ashraf, et al., Energy Environ. Mater. 6 (2023) e12273.

    87. [87]

      W. Xu, S. Zhang, R. Shen, et al., Energy Environ. Mater. 6 (2023) e12279.

    88. [88]

      Z. Huang, Z. Liu, M. Liao, et al., Chem. Eng. J. 462 (2023) 142281.

    89. [89]

      C. Wu, J. Guo, J. Zhang, et al., Renew. Energy 136 (2019) 1064–1070.

    90. [90]

      S. Guan, L. An, S. Ashraf, et al., Appl. Catal. B: Environ. Energy 269 (2020) 118775.

  • 加载中
    1. [1]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    2. [2]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    3. [3]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    4. [4]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    5. [5]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    8. [8]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    9. [9]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    12. [12]

      Futao YiYing LiuYao ChenJiahao ZhuQuanguo HeChun YangDongge MaJun Liu . Dual S-Scheme g-C3N4/Ag3PO4/g-C3N5 photocatalysts for removal of tetracycline pollutants through enhanced molecular oxygen activation. Chinese Chemical Letters, 2025, 36(8): 110544-. doi: 10.1016/j.cclet.2024.110544

    13. [13]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    14. [14]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    15. [15]

      Zhongchao ZhouJian SongYinghao XieYuqian MaHong HuHui LiLei ZhangCharles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    19. [19]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    20. [20]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return