Azobenzene-containing photoresponsive metal-organic cages
-
* Corresponding authors.
E-mail addresses: xudezheng1@jahwa.com.cn (D. Xu), jiahaidong@jahwa.com.cn (H. Jia), lxu@chem.ecnu.edu.cn (L. Xu).
Citation:
Xin Zhang, Tongxia Jin, Changyin Yang, Dezheng Xu, Haidong Jia, Lin Xu. Azobenzene-containing photoresponsive metal-organic cages[J]. Chinese Chemical Letters,
;2025, 36(12): 111135.
doi:
10.1016/j.cclet.2025.111135
D. Fujita, Y. Ueda, S. Sato, et al., Nature 540 (2016) 563–566.
doi: 10.1038/nature20771
A.M. Castilla, W.J. Ramsay, J.R. Nitschke, Acc. Chem. Res. 47 (2014) 2063–2073.
doi: 10.1021/ar5000924
R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Chem. Rev. 111 (2011) 6810–6918.
doi: 10.1021/cr200077m
B. Sun, M. Wang, Z. Lou, et al., J. Am. Chem. Soc. 137 (2015) 1556–1564.
doi: 10.1021/ja511443p
T.R. Cook, Y.R. Zheng, P.J. Stang, Chem. Rev. 113 (2013) 734–777.
doi: 10.1021/cr3002824
R. Cué-Sampedro, J.A. Sánchez-Fernández, Molecules 30 (2025) 462.
doi: 10.3390/molecules30030462
M. Yoshizawa, J.K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 48 (2009) 3418–3438.
doi: 10.1002/anie.200805340
M. Pan, K. Wu, J.H. Zhang, C.Y. Su, Coord. Chem. Rev. 378 (2019) 333–349.
doi: 10.1016/j.ccr.2017.10.031
P.K. Maitra, S. Bhattacharyya, N. Hickey, P.S. Mukherjee, J. Am. Chem. Soc. 146 (2024) 15301–15308.
doi: 10.1021/jacs.4c02956
S.C. Li, L.X. Cai, M. Hong, Q. Chen, Q.F. Sun, Angew. Chem. Int. Ed. 61 (2022) e202204732.
doi: 10.1002/anie.202204732
T. Jin, K. Zeng, X. Zhang, et al., Angew. Chem. Int. Ed. 63 (2024) e202409878.
doi: 10.1002/anie.202409878
J. Zhao, K. Zeng, W.T. Dou, et al., Adv. Funct. Mater. 35 (2025) 2413920.
doi: 10.1002/adfm.202413920
H. Liu, C. Guo, Y. Huang, et al., Chem. Sci. 15 (2024) 14352–14357.
doi: 10.1039/d4sc02736a
Y. Wang, Y. Qin, X. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107576.
doi: 10.1016/j.cclet.2022.05.090
L. Zhou, C. Yang, W. Dou, et al., Chin. Chem. Lett. 35 (2024) 108669.
doi: 10.1016/j.cclet.2023.108669
Z. Wang, S. Furukawa, Acc. Chem. Res. 57 (2024) 327–337.
doi: 10.1021/acs.accounts.3c00655
G.R. Lorzing, B.A. Trump, C.M. Brown, E.D. Bloch, Chem. Mater. 29 (2017) 8583–8587.
doi: 10.1021/acs.chemmater.7b03361
Q.Q. Wang, S. Gonell, S.H.A.M. Leenders, et al., Nat. Chem. 8 (2016) 225–230.
doi: 10.1038/nchem.2425
D. Zhang, T.K. Ronson, Y.Q. Zou, J.R. Nitschke, Nat. Rev. Chem. 5 (2021) 168–182.
doi: 10.1038/s41570-020-00246-1
Q.W. Zeng, L. Hu, Y. Niu, et al., Chem. Commun. 60 (2024) 3469–3483.
doi: 10.1039/d3cc05935a
L.J. Wang, S. Bai, Y.F. Han, J. Am. Chem. Soc. 144 (2022) 16191–16198.
doi: 10.1021/jacs.2c07586
L.J. Wang, Z.E. Zhang, Y.Z. Zhang, Y.F. Han, Angew. Chem. Int. Ed. 63 (2024) e202407278.
doi: 10.1002/anie.202407278
C. García-Simón, M. Garcia-Borràs, L. Gómez, et al., Nat. Commun. 5 (2014) 5557.
doi: 10.1038/ncomms6557
M. Morimoto, S.M. Bierschenk, K.T. Xia, et al., Nat. Catal. 3 (2020) 969–984.
doi: 10.1038/s41929-020-00528-3
Z. Ashbridge, J.N.H. Reek, Nat. Synth. 3 (2024) 1197–1207.
doi: 10.1038/s44160-024-00606-5
M. Yoshizawa, M. Tamura, M. Fujita, Science 312 (2006) 251–254.
doi: 10.1126/science.1124985
M.D. Pluth, R.G. Bergman, K.N. Raymond, Science 316 (2007) 85–88.
doi: 10.1126/science.1138748
Y. Ueda, H. Ito, D. Fujita, M. Fujita, J. Am. Chem. Soc. 139 (2017) 6090–6093.
doi: 10.1021/jacs.7b02745
Y. Liu, L. Huang, L. Qin, T. Zhou, ChemCatChem 17 (2025) e202401487.
doi: 10.1002/cctc.202401487
M.D. Ward, Chem. Commun. 60 (2024) 10464–10475.
doi: 10.1039/d4cc03678f
H.Y. Lin, L.Y. Zhou, F. Mei, et al., Angew. Chem. Int. Ed. 62 (2023) e202301900.
doi: 10.1002/anie.202301900
R. Saha, B. Mondal, P.S. Mukherjee, Chem. Rev. 122 (2022) 12244–12307.
doi: 10.1021/acs.chemrev.1c00811
P. Jia, Y. Hu, Z. Zeng, et al., Chin. Chem. Lett. 34 (2023) 107511.
doi: 10.1016/j.cclet.2022.05.025
Q.H. Ling, Z.C. Lou, L. Zhang, et al., Chem. Soc. Rev. 53 (2024) 6042–6067.
doi: 10.1039/d3cs01081c
P. Abhik, R. Subhadip, Curr. Org. Chem. 28 (2024) 941–958.
doi: 10.2174/0113852728292501240301062823
M. Zhang, M.L. Saha, M. Wang, et al., J. Am. Chem. Soc. 139 (2017) 5067–5074.
doi: 10.1021/jacs.6b12536
H. Duan, Y. Li, Q. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 10101–10110.
doi: 10.1002/anie.201912730
H. Dobashi, L. Catti, Y. Tanaka, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 59 (2020) 11881–11885.
doi: 10.1002/anie.202004168
B. Song, Z. Zhang, W. Dou, et al., Angew. Chem. Int. Ed. 64 (2025) e202414089.
doi: 10.1002/anie.202414089
A.J. McConnell, C.S. Wood, P.P. Neelakandan, J.R. Nitschke, Chem. Rev. 115 (2015) 7729–7793.
doi: 10.1021/cr500632f
P.J. Lusby, P. Müller, S.J. Pike, A.M.Z. Slawin, J. Am. Chem. Soc. 131 (2009) 16398–16400.
doi: 10.1021/ja907297z
T.Y. Kim, R.A.S. Vasdev, D. Preston, J.D. Crowley, Chem. Eur. J. 24 (2018) 14878–14890.
doi: 10.1002/chem.201802081
W. Wang, Y.X. Wang, H.B. Yang, Chem. Soc. Rev. 45 (2016) 2656–2693.
doi: 10.1039/C5CS00301F
J. Zhao, Z. Zhou, G. Li, P.J. Stang, X. Yan, Natl. Sci. Rev. 8 (2021) nwab045.
doi: 10.1093/nsr/nwab045
Y. Gu, E.A. Alt, H. Wang, et al., Nature 560 (2018) 65–69.
doi: 10.1038/s41586-018-0339-0
D.H. Qu, Q.C. Wang, Q.W. Zhang, X. Ma, H. Tian, Chem. Rev. 115 (2015) 7543–7588.
doi: 10.1021/cr5006342
R.J. Li, J. Tessarolo, H. Lee, G.H. Clever, J. Am. Chem. Soc. 143 (2021) 3865–3873.
doi: 10.1021/jacs.0c12188
R.J. Li, J.J. Holstein, W.G. Hiller, J. Andréasson, G.H. Clever, J. Am. Chem. Soc. 141 (2019) 2097–2103.
doi: 10.1021/jacs.8b11872
P. Mal, D. Schultz, K. Beyeh, K. Rissanen, J.R. Nitschke, Angew. Chem. Int. Ed. 47 (2008) 8297–8301.
doi: 10.1002/anie.200803066
L. Xu, D. Zhang, T.K. Ronson, J.R. Nitschke, Angew. Chem. Int. Ed. 59 (2020) 7435–7438.
doi: 10.1002/anie.202001059
W. Cullen, S. Turega, C.A. Hunter, M.D. Ward, Chem. Sci. 6 (2015) 625–631.
doi: 10.1039/C4SC02090A
S.M. Jansze, G. Cecot, K. Severin, Chem. Sci. 9 (2018) 4253–4257.
doi: 10.1039/c8sc01108g
L.X. Cai, D.N. Yan, P.M. Cheng, et al., J. Am. Chem. Soc. 143 (2021) 2016–2024.
doi: 10.1021/jacs.0c12064
D. Zhang, T.K. Ronson, S. Güryel, et al., J. Am. Chem. Soc. 141 (2019) 14534–14538.
doi: 10.1021/jacs.9b07307
I.A. Riddell, M.M.J. Smulders, J.K. Clegg, et al., Nat. Chem. 4 (2012) 751–756.
doi: 10.1038/nchem.1407
D. Zhang, T.K. Ronson, L. Xu, J.R. Nitschke, J. Am. Chem. Soc. 142 (2020) 9152–9157.
doi: 10.1021/jacs.0c03798
D. Preston, A. Fox-Charles, W.K.C. Lo, J.D. Crowley, Chem. Commun. 51 (2015) 9042–9045.
doi: 10.1039/C5CC02226F
J.K. Clegg, J. Cremers, A.J. Hogben, et al., Chem. Sci. 4 (2013) 68–76.
doi: 10.1039/C2SC21486E
S.P. Zheng, Y.W. Xu, P.Y. Su, et al., Chin. Chem. Lett. 35 (2024) 108477.
doi: 10.1016/j.cclet.2023.108477
J. Zhao, L. Cheng, K. Liu, et al., Chem. Commun. 56 (2020) 8031–8034.
doi: 10.1039/d0cc01205j
J. Liang, B. Wu, C. Jia, X.J. Yang, CrystEngComm 11 (2009) 975–977.
doi: 10.1039/b820640f
T. Murase, S. Sato, M. Fujita, Angew. Chem. Int. Ed. 46 (2007) 5133–5136.
doi: 10.1002/anie.200700793
M. Han, R. Michel, B. He, et al., Angew. Chem. Int. Ed. 52 (2013) 1319–1323.
doi: 10.1002/anie.201207373
C. Stuckhardt, D. Roke, W. Danowski, et al., Beilstein J. Org. Chem. 15 (2019) 2767–2773.
doi: 10.3762/bjoc.15.268
H. Wang, C.N. Zhu, H. Zeng, et al., Adv. Mater. 31 (2019) 1807328.
doi: 10.1002/adma.201807328
S. Wu, H.J. Butt, Macromol. Rapid Commun. 41 (2020) 1900413.
doi: 10.1002/marc.201900413
P. Weis, S. Wu, Macromol. Rapid Commun. 39 (2018) 1700220.
doi: 10.1002/marc.201700220
W.C. Xu, S. Sun, S. Wu, Angew. Chem. Int. Ed. 58 (2019) 9712–9740.
doi: 10.1002/anie.201814441
W.T. Dou, Q.W. Zeng, Y. Kang, et al., Chin. Chem. Lett. 36 (2025) 109995.
doi: 10.1016/j.cclet.2024.109995
L. Zhang, H.X. Wang, S. Li, M. Liu, Chem. Soc. Rev. 49 (2020) 9095–9120.
doi: 10.1039/d0cs00191k
M. Younis, S. Ahmad, A. Atiq, et al., Chem. Rec. 23 (2023) e202300126.
doi: 10.1002/tcr.202300126
H. Ren, P. Yang, H. Yu, Molecules 27 (2022) 3977.
doi: 10.3390/molecules27133977
H. Yao, Z. Yang, X. Fan, et al., Mater. Chem. Front. 3 (2019) 1168–1173.
doi: 10.1039/c9qm00141g
Demselben, Ann. Pharm. 12 (1834) 311–314.
doi: 10.1002/jlac.18340120282
G.S. Kumar, D.C. Neckers, Chem. Rev. 89 (1989) 1915–1925.
doi: 10.1021/cr00098a012
H.M.D. Bandara, S.C. Burdette, Chem. Soc. Rev. 41 (2012) 1809–1825.
doi: 10.1039/C1CS15179G
A. Ghosh, J. Pruchyathamkorn, C. Fuertes Espinosa, J.R. Nitschke, J. Am. Chem. Soc. 146 (2024) 2568–2573.
doi: 10.1021/jacs.3c11005
J. Park, L.B. Sun, Y.P. Chen, Z. Perry, H.C. Zhou, Angew. Chem. Int. Ed. 53 (2014) 5842–5846.
doi: 10.1002/anie.201310211
Y. Jiang, J. Park, P. Tan, et al., J. Am. Chem. Soc. 141 (2019) 8221–8227.
doi: 10.1021/jacs.9b01380
R.G. DiNardi, A.O. Douglas, R. Tian, et al., Angew. Chem. Int. Ed. 61 (2022) e202205701.
doi: 10.1002/anie.202205701
P. Cecot, A. Walczak, G. Markiewicz, A.R. Stefankiewicz, Inorg. Chem. Front. 8 (2021) 5195–5200.
doi: 10.1039/d1qi01063h
S. Oldknow, D.R. Martir, V.E. Pritchard, et al., Chem. Sci. 9 (2018) 8150–8159.
doi: 10.1039/c8sc03499k
E. Britton, R.J. Ansell, M.J. Howard, M.J. Hardie, Inorg. Chem. 60 (2021) 12912–12923.
doi: 10.1021/acs.inorgchem.1c01297
S. Fu, Q. Luo, M. Zang, et al., Mater. Chem. Front. 3 (2019) 1238–1243.
doi: 10.1039/c9qm00160c
M.B. Tipping, L. Pruñonosa Lara, A.B. Solea, L.K.S. von Krbek, M.D. Ward, Chem. Sci. 15 (2024) 8488–8499.
doi: 10.1039/d4sc01575d
A.D.W. Kennedy, R.G. DiNardi, L.L. Fillbrook, W.A. Donald, J.E. Beves, Chem. Eur. J. 28 (2022) e202104461.
doi: 10.1002/chem.202104461
R.G. DiNardi, S. Rasheed, S.S. Capomolla, et al., J. Am. Chem. Soc. 146 (2024) 21196–21202.
doi: 10.1021/jacs.4c04846
W. Moormann, D. Langbehn, R. Herges, Beilstein J. Org. Chem. 15 (2019) 727–732.
doi: 10.3762/bjoc.15.68
A. Mukherjee, M.D. Seyfried, B.J. Ravoo, Angew. Chem. Int. Ed. 62 (2023) e202304437.
doi: 10.1002/anie.202304437
R. Siewertsen, H. Neumann, B. Buchheim-Stehn, et al., J. Am. Chem. Soc. 131 (2009) 15594–15595.
doi: 10.1021/ja906547d
H. Lee, J. Tessarolo, D. Langbehn, et al., J. Am. Chem. Soc. 144 (2022) 3099–3105.
doi: 10.1021/jacs.1c12011
D. Hugenbusch, M. Lehr, J.S. von Glasenapp, A.J. McConnell, R. Herges, Angew. Chem. Int. Ed. 62 (2023) e202212571.
doi: 10.1002/anie.202212571
Shengyong Liu , Hui Li , Wei Zhang , Yan Zhang , Yan Dong , Wei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465
Kun Zhang , Xin-Yue Lou , Yan Wang , Weiwei Huan , Ying-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Xinhui Fan , Yonghao Fan , Yuli Dang , Puhui Xie , Xin Li , Zhanqi Cao , Song Jiang , Lijie Liu , Xin Zheng , Lixia Xie , Caoyuan Niu , Guoxing Liu , Yong Chen . Logically ordered control of organic room-temperature long-lived supramolecular luminophors. Chinese Chemical Letters, 2025, 36(8): 110648-. doi: 10.1016/j.cclet.2024.110648
Ran Gao , Qian Zou , Qian-Qian Su , Xiu-Fang Ma , Ye-Hui Qin , Rui Liao , Song-Song Bao , Li-Min Zheng . Photoresponsive lanthanide-dianthracene framework: Introduction of photoactive anthracene pairs by controlling the synthesis temperature. Chinese Chemical Letters, 2025, 36(10): 110404-. doi: 10.1016/j.cclet.2024.110404
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Han-Bin Liu , Xiaoyu Cheng , Zhou Guo , Juan Yang , Fuwen Tan , Donghui Lan , Jian-Ping Tan , Bing Yi , Weixin Zhai , Qing-Hui Guo . CrownBind-IA: A machine learning model predicting binding constants between crown ethers and alkali metal ions. Chinese Chemical Letters, 2025, 36(12): 111149-. doi: 10.1016/j.cclet.2025.111149
Ying-Mei Zhong , Zi-Jun Xia , Yu-Hang Hu , Li-Peng Zhou , Li-Xuan Cai , Qing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Kai Ye , Zhicheng Ye , Chuantao Wang , Zhilai Luo , Cheng Lian , Chunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Chao Zhang , Ai-Feng Liu , Shihui Li , Fang-Yuan Chen , Jun-Tao Zhang , Fang-Xing Zeng , Hui-Chuan Feng , Ping Wang , Wen-Chao Geng , Chuan-Rui Ma , Dong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Dan Luo , Jinya Tian , Jianqiao Zhou , Xiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444
Xia Li , Yandie Liu , Zhenglin Du , Qiangsheng Zhang , Qing Chen , Jialin Xie , Kelong Zhu . Bowl-in-bowl encapsulation of corannulene by herteroatom-bridged nanobelts. Chinese Chemical Letters, 2025, 36(5): 110249-. doi: 10.1016/j.cclet.2024.110249
Pei-Pei Liu , Jia-Bin Xing , Yue-Yang Liu , Ke Feng , Hui Wang , Dan-Wei Zhang , Wei Zhou , Gang Zhao , Jiaheng Zhang , Zhan-Ting Li . Sulfonatoproxylated cucurbit[7]urils as highly water-soluble and biocompatible excipients for solubilizing poorly soluble drugs and improving the bioavailability of indomethacin. Chinese Chemical Letters, 2025, 36(9): 110831-. doi: 10.1016/j.cclet.2025.110831
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014