Citation: Haotian Zhang, Shengfa Feng, Mufan Cao, Xiong Xiong Liu, Pengcheng Yuan, Yaping Wang, Min Gao, Long Pan, Zhengming Sun. Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries[J]. Chinese Chemical Letters, ;2025, 36(8): 111096. doi: 10.1016/j.cclet.2025.111096 shu

Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries

    * Corresponding authors.
    E-mail addresses: panlong@seu.edu.cn (L. Pan), zmsun@seu.edu.cn (Z. Sun).
    1 These authors contributed equally to this work.
  • Received Date: 3 January 2025
    Revised Date: 11 March 2025
    Accepted Date: 16 March 2025
    Available Online: 18 March 2025

Figures(6)

  • The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength, ionic conductivity, and thickness. Here, we propose Al2O3-coated polyimide (AO/PI) porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt (PIS) solid-state electrolytes, aiming to suppress lithium dendrite growth and improve full-cell performance. The Al2O3 coating layer not only refines the wettability of polyimide porous film to PIS, but also performs as a high modulus protective layer to suppress the growth of lithium dendrites. The resulting PI/AO@PIS exhibits a small thickness of only 35 µm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa. In addition, the PI/AO@PIS delivers a high ionic conductivity of 0.1 mS/cm at 25 ℃. As a result, the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 mA/cm2 without noticeable lithium dendrite formation. Moreover, the PI/AO@PIS-based LiFePO4Li full cells demonstrate outstanding rate performance (125.7 mAh/g at 5 C) and impressive cycling stability (96.1% capacity retention at 1 C after 200 cycles). This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.
  • 加载中
    1. [1]

      Z. Cheng, T. Liu, B. Zhao, et al., Energy Storage Mater. 34 (2021) 388–416.

    2. [2]

      L. Xu, J. Li, H. Shuai, et al., J. Energy Chem. 67 (2022) 524–548.

    3. [3]

      B.H. Zhang, Y. Wu, Y.L. Hou, et al., Small 20 (2023) 2305322.

    4. [4]

      Y.L. Liao, J.K. Hu, Z.H. Fu, et al., J. Energy Chem. 80 (2023) 458–465.

    5. [5]

      S.J. Yang, X. Shen, X.B. Cheng, et al., J. Energy Chem. 69 (2022) 70–75.

    6. [6]

      S.J. Yang, J.K. Hu, F.N. Jiang, et al., InfoMat 6 (2023) e12512.

    7. [7]

      P. Liu, Z. Qiu, F. Cao, et al., J. Mater. Sci. Technol. 177 (2024) 68–78.

    8. [8]

      Y. Zheng, Y. Yao, J. Ou, et al., Chem. Soc. Rev. 49 (2020) 8790–8839.  doi: 10.1039/d0cs00305k

    9. [9]

      P.P. Paul, E.J. McShane, A.M. Colclasure, et al., Adv. Energy Mater. 11 (2021) 2100372.

    10. [10]

      S.J. Yang, H. Yuan, N. Yao, et al., Adv. Mater. 36 (2024) 2405086.

    11. [11]

      H. Zhang, C. Li, M. Piszcz, et al., Chem. Soc. Rev. 46 (2017) 797–815.

    12. [12]

      Y. Chen, K. Wen, T. Chen, et al., Energy Storage Mater. 31 (2020) 401–433.

    13. [13]

      X. Li, C. Yi, W. Hu, et al., Chin. Chem. Lett. 36 (2025) 110215.

    14. [14]

      T.T. Vu, H.J. Cheon, S.Y. Shin, et al., Energy Storage Mater. 61 (2023) 102876.

    15. [15]

      S. Liu, W. Liu, D. Ba, et al., Adv. Mater. 35 (2023) e2110423.

    16. [16]

      C. Fang, K. Huang, J. Zhao, et al., Nano Res. 17 (2024) 5251–5260.  doi: 10.1007/s12274-024-6502-z

    17. [17]

      B. Halder, M.G. Mohamed, S.W. Kuo, P. Elumalai, Mater. Today Chem. 36 (2024) 101926.

    18. [18]

      M. Martinez-Ibañez, E. Sanchez-Diez, L. Qiao, et al., Adv. Funct. Mater. 30 (2020) 2000455.

    19. [19]

      S. Zhao, J. Lu, B. Sheng, et al., Chin. Chem. Lett. 36 (2025) 110008.

    20. [20]

      Y. Ma, C. Wang, K. Yang, et al., ACS Appl. Mater. Interface. 15 (2023) 17978–17985.  doi: 10.1021/acsami.3c02084

    21. [21]

      H. Liang, L. Wang, A. Wang, et al., Nano-Micro Lett. 15 (2023) 42.

    22. [22]

      A. Du, H. Lu, S. Liu, et al., Adv. Energy Mater. 14 (2024) 2400808.

    23. [23]

      Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, Adv. Mater. 33 (2021) e2100353.

    24. [24]

      Y. Wang, P. Yuan, X.X. Liu, et al., Adv. Funct. Mater. 34 (2024) 2405060.

    25. [25]

      Z. Zhao, Y. Pan, H. Chen, et al., Adv. Funct. Mater. 34 (2024) 2402182.

    26. [26]

      X. Shi, Z. Jia, D. Wang, et al., Adv. Mater. 36 (2024) e2405097.

    27. [27]

      Y. Han, B. Liu, Z. Xiao, et al., InfoMat 3 (2021) 155–174.  doi: 10.1002/inf2.12166

    28. [28]

      Y. Zhang, Y.Z. Song, J.J. Yuan, et al., J. Appl. Polym. Sci. 135 (2018) 46423.

    29. [29]

      M.M. Methani, M. Revilla-Leon, A. Zandinejad, J. Esthet. Restor. Dent. 32 (2020) 182–192.  doi: 10.1111/jerd.12535

    30. [30]

      M. Choudhuri, D. Choudhury, J. Mukhopadhyay, M. Mukhopadhyay, Macromol. Symp. 388 (2019) 1900031.

    31. [31]

      S. Ahmad, S.A. Agnihotry, Curr. Appl. Phys. 9 (2009) 108–114.

    32. [32]

      J. Wang, Y. Liu, Q. Cai, et al., Adv. Mater. 34 (2021) 2107957.

    33. [33]

      A.J. Blake, R.R. Kohlmeyer, J.O. Hardin, et al., Adv. Energy Mater. 7 (2017) 1602920.

    34. [34]

      W. Yang, Y. Liu, X. Sun, et al., Angew. Chem. Int. Ed. 63 (2024) e202401428.

    35. [35]

      Y. Yao, Z. Wei, H. Wang, et al., Adv. Energy Mater. 10 (2020) 1903698.

    36. [36]

      X. Huang, S. Huang, T. Wang, et al., Adv. Funct. Mater. 33 (2023) 2300683.

    37. [37]

      W. Liu, S.W. Lee, D. Lin, et al., Nat. Energy 2 (2017) 17035.

    38. [38]

      P. Liu, S. Shen, Z. Qiu, et al., Adv. Mater. 36 (2024) 2312812.

  • 加载中
    1. [1]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    2. [2]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    3. [3]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    4. [4]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    5. [5]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    6. [6]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    7. [7]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    8. [8]

      Bao LiPengyao YanMengmin JiaLiang WangYaru QiaoHaowen LiCanhui WuZhuangzhuang ZhangDongmei DaiDai-Huo Liu . Engineering lithiophilic LiCx layer to robust interfacial chemistry between LAGP and Li anode for Li-metal batteries. Chinese Chemical Letters, 2025, 36(7): 110145-. doi: 10.1016/j.cclet.2024.110145

    9. [9]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    10. [10]

      Qiao WangZiling JiangChuang YuLiping LiGuangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006

    11. [11]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    12. [12]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    13. [13]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    14. [14]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    15. [15]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    16. [16]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    17. [17]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    18. [18]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    19. [19]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    20. [20]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return